Nav: Home

Controllable electron flow in quantum wires

February 06, 2019

Princeton researchers have demonstrated a new way of making controllable "quantum wires" in the presence of a magnetic field, according to a new study published in Nature.

The researchers detected channels of conducting electrons that form between two quantum states on the surface of a bismuth crystal subjected to a high magnetic field. These two states consist of electrons moving in elliptical orbits with different orientations.

To the team's surprise, they found that the current flow in these channels can be turned on and off, making these channels a new type of controllable quantum wire.

"These channels are remarkable because they spontaneously form at the boundaries between different quantum states in which electrons collectively align their elliptical orbits," said Ali Yazdani, the Class of 1909 Professor of Physics and director of the Princeton Center for Complex Materials, who headed the research. "It is exciting to see how the interaction between electrons in the channels strongly dictates whether or not they can conduct."

The researchers used a scanning tunneling microscope - a device capable of imaging individual atoms and mapping the motion of electrons on a material's surface - to visualize electron behaviors on the surface of a crystal made of pure bismuth.

With this instrument, the team directly imaged the electrons' motions in the presence of a magnetic field thousands of times larger that of a refrigerator magnet. The application of the large magnetic field forces electrons to move in elliptical orbits, instead of the more typical flow of electrons parallel to the direction of an electric field.

The team found that the conducting channels form at the boundary, which they call a valley-polarized domain wall, between two regions on the crystal where the electron orbits switch orientations abruptly.

Mallika Randeria, a graduate student in the Department of Physics, who carried out the experiments, said: "We find that there are two-lane and four-lane channels in which the electrons can flow, depending on the precise value of the magnetic field." She and her colleagues observed that when electrons are tuned to move in a four-lane channel, they get stuck, but they can flow unimpeded when they are confined to only a two-lane channel.

In trying to understand this behavior, the researchers uncovered new rules by which the laws of quantum mechanics dictate repulsion between electrons in these multi-channel quantum wires. While the larger number of lanes would seem to suggest better conductivity, the repulsion between electrons counter-intuitively causes them to switch lanes, change direction, and get stuck, resulting in insulating behavior. With fewer channels, electrons have no option to change lanes and must transmit electrical current even if they have to move "through" each other--a quantum phenomenon only possible in such one-dimensional channels.

Similar protected conduction occurs along the boundaries of so-called topological states of matter, which were the subject of the 2016 Nobel Prize awarded to Princeton's F. Duncan Haldane, the Sherman Fairchild University Professor of Physics. The theoretical explanation for the new finding builds on earlier work carried out by two members of the team, Siddharth Parameswaran, who was then a graduate student at Princeton and is now an associate professor of physics at Oxford University, and Princeton's Shivaji Sondhi, professor of physics, and collaborators.

"Although some of the theoretical ideas we used have been around for a while, it's still a challenge to see how they fit together to explain an actual experiment, and a real thrill when that happens," Parameswaran said. "This is a perfect example of how experiment and theory work in tandem: Without the new experimental data we would never have revisited our theory, and without the new theory it would have been difficult to understand the experiments."
The team also included Kartiek Agarwal a postdoctoral research associate in electrical engineering, who with Randeria contributed equally to the work. Additional contributors were Benjamin Feldman, formerly a Dicke postdoctoral fellow and now an assistant professor of physics at Stanford University; postdoctoral research associate Hao Ding in physics; chemistry postdoctoral research associate Huiwen Ji; and Robert Cava, Russell Wellman Moore Professor of Chemistry.

The research was funded by the Gordon and Betty Moore Foundation, the U.S. Department of Energy Office of Basic Energy Sciences, the U.K. Foundation and the National Science Foundation.

The study, "Interacting multi-channel topological boundary modes in a quantum Hall valley system," by Mallika T. Randeria, Kartiek Agarwal, Benjamin E. Feldman, Hao Ding, Huiwen Ji, R. J. Cava, S. L. Sondhi, Siddharth A. Parameswaran, and Ali Yazdani, was published online in the journal Nature on February 6, 2019.

Princeton University

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".