Nav: Home

In their DNA: Rotator cuff stem cells more likely to develop into fat cells

February 06, 2019

February 6, 2019 - Why are fat deposits more likely to occur after tears of the shoulder's rotator cuff, compared to other types of muscle injuries? An increased propensity of stem cells within with rotator cuff muscles to develop into fat cells may explain the difference, reports a study in the February 6, 2019 issue of The Journal of Bone & Joint Surgery. The journal is published in the Lippincott portfolio in partnership with Wolters Kluwer.

"Satellite" stem cells in the rotator cuff are more likely to develop into fat cells and less likely to develop into muscle cells, compared to calf muscle satellite cells, according to the experimental study by Christopher L. Mendias, PhD, ATC, and colleagues of the University of Michigan Medical School, Ann Arbor, and the Hospital for Special Surgery, New York. The researchers write, "There appears to be a cellular and genetic basis behind the generally poor rates of rotator cuff muscle healing."

'Satellite Cells' May Form More Fat Than Muscle after Rotator Cuff Tears

The researchers performed a series of experiments using muscle cells from mice to evaluate the characteristics of a type of stem cells called satellite cells. Stem cells are specialized cells with the potential to develop into different types of cells. Satellite cells, located between muscle fibers, play an essential role in repair after muscle injuries.

Tears of the shoulder rotator cuff are a common problem. Especially in chronic tears, deposits of fat often develop, contributing to weakening and atrophy of the rotator cuff muscles. This fatty infiltration can continue even after successful rotator cuff repair surgery.

Dr. Mendias and colleagues created cultures of satellite cells isolated from mouse rotator cuff and calf muscles. "Clinically, we know that the rotator cuff is one of the most difficult muscle groups to rehabilitate after injury, and this is thought to occur due to the extensive fat that accumulates in the muscle in patients with chronic tears," says lead author Manuel Schubert, MD, MS, chief resident in orthopaedic surgery at the University of Michigan. "We thought there might be a genetic basis to explain why the rotator cuff accumulates fat after injury, and the specialized transgenic model we used in this study allowed us to precisely test this." 

Compared to the calf muscle satellite cells, satellite cells from the rotator cuff developed into 23 percent fewer muscle cells, and they showed an 87 percent decrease in a "marker" for muscle formation. The rotator cuff satellite cells also had a four- to 65-fold increase in markers of genes involved in fat cell generation (adipogenesis).

DNA-level (epigenetic) studies identified hundreds of differences in gene activation between satellite cells from rotator cuff versus calf muscles. The affected genes were involved in pathways related to fat metabolism and adipogenesis, suggesting the muscle stem cells from the rotator cuff are programmed to more easily become fat cells.

Building on previous research, the new study shows increased "adipogenic differentiation capacity" of rotator cuff satellite cells. Increased potential to develop into fat cells - and decreased potential to develop into muscle cells - may be an important explanation for the high rate of fatty infiltration in muscles of patients with chronic rotator cuff tears, even after rotator cuff surgery.

The study also has potential therapeutic findings. "Satellite cells can be isolated from other muscle groups with relative ease." says Dr. Mendias, an Associate Scientist at the Hospital for Special Surgery and an Adjunct Associate Professor at the University of Michigan. "While further studies are necessary, it is possible that a patient's own stem cells from a muscle that heals well, like the calf, could be transplanted to the rotator cuff muscle at the time of surgical repair. These transplanted cells might be better able to regenerate the chronically damaged muscle than the resident stem cells."
-end-
Additional researchers who contributed to the study are Andrew Noah, MS, Jonathan Gumucio, PhD, and Asheesh Bedi, MD, all at the University of Michigan.

Click here to read "Reduced Myogenic and Increased Adipogenic Differentiation Capacity of Rotator Cuff Muscle Stem Cells"

DOI: 10.2106/JBJS.18.00509

About The Journal of Bone & Joint Surgery

The Journal of Bone & Joint Surgery (JBJS) has been the most valued source of information for orthopaedic surgeons and researchers for over 125 years and is the gold standard in peer-reviewed scientific information in the field. A core journal and essential reading for general as well as specialist orthopaedic surgeons worldwide, The Journal publishes evidence-based research to enhance the quality of care for orthopaedic patients. Standards of excellence and high quality are maintained in everything we do, from the science of the content published to the customer service we provide. JBJS is an independent, non-profit journal.

About Wolters Kluwer

Wolters Kluwer is a global leader in professional information, software solutions, and services for the health, tax & accounting, finance, risk & compliance, and legal sectors. We help our customers make critical decisions every day by providing expert solutions that combine deep domain knowledge with specialized technology and services.

Wolters Kluwer, headquartered in the Netherlands, reported 2017 annual revenues of €4.4 billion. The company serves customers in over 180 countries, maintains operations in over 40 countries, and employs approximately 19,000 people worldwide.

Wolters Kluwer Health is a leading global provider of trusted clinical technology and evidence-based solutions that engage clinicians, patients, researchers and students with advanced clinical decision support, learning and research and clinical intelligence. For more information about our solutions, visit http://healthclarity.wolterskluwer.com and follow us on LinkedIn and Twitter @WKHealth.

Wolters Kluwer Health

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...