Nav: Home

OU study finds insects crave salt and search grasslands for the limiting nutrient

February 06, 2019

A University of Oklahoma team from the Geographical Ecology Group has published a new study in the journal Ecology on the nutritional preferences of diverse insect communities from Texas to Minnesota. The OU team conducted 54 experiments in both grazed and ungrazed grasslands to determine the salt cravings of insects and the types of insects that crave salt. The OU team found that insects not only crave salt, but will search for it in their grassland habitats.

"Sodium is relatively unique among the elements in that it is required by all animals, but not used by plant life," said Ellen Welti, lead author on the study and postdoctoral researcher in the OU Department of Biology. "Sodium is a critical nutrient for animal cell membrane functions while sodium is generally a stressor for plants. In other words, plants don't need salt and plant eaters do."

OU team members conducted a simple experiment containing plots receiving water only and the other half of the plots receiving a solution of table salt or simulated cow urine. This experiment was repeated at 54 grassland sites across the United States. Two days after setting up each experiment, a team member would literally vacuum the bugs from the plots. The bugs captured in the bag would then be frozen, sorted, counted and compared between salted and unsalted plots. At each site, plant and soil samples were taken to characterize the spectrum of grasslands from 'bland to salty.'

A total of 32,430 insects were identified from 120 taxa. Naturally, grasslands near the Gulf of Mexico tended to have saltier plants, but surprisingly had less salty soils, likely due to their sandy composition. The experimental plots splashed with the simulated cow urine attracted an average of 70 percent more bugs than those splashed with water. Additionally, the study found that grasslands were less salty hosted insects with keener cravings for salt.

"This study highlights the knowledge gap in understanding nutrient limitation for animal communities and the importance of sodium," said Welti. "While sodium attraction across a broad geographic gradient suggest widespread sodium limitation, it is not known how long-term changes in sodium levels translate into changes in animal abundances and shifts in community composition."
-end-
The paper, "A distributed experiment demonstrates widespread sodium limitations in grassland food webs," published by Welti and Michael Kaspari, senior author and professor of biology in the OU College of Arts and Sciences, is available at https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.2600.

The National Science Foundation funded this research with a $545,733 grant for a period of three years. Welti will continue to conduct studies on the limiting nutrient sodium in insect communities in North America. For more information about this study and future research on this topic, please contact Ellen Welti at welti@ou.edu.

University of Oklahoma

Related Biology Articles:

Experimental Biology press materials available now
Though the Experimental Biology (EB) 2020 meeting was canceled in response to the COVID-19 outbreak, EB research abstracts are being published in the April 2020 issue of The FASEB Journal.
Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.
Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.
A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.
Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
More Biology News and Biology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.