Nav: Home

Manure injection offers hope, challenge for restoring Chesapeake water quality

February 06, 2019

Widespread adoption by dairy farmers of injecting manure into the soil instead of spreading it on the surface could be crucial to restoring Chesapeake Bay water quality, according to researchers who compared phosphorus runoff from fields treated by both methods. However, they predict it will be difficult to persuade farmers to change practices.

In a four-year study, overland and subsurface flows from 12 hydrologically isolated research plots at Penn State's Russell E. Larson Agricultural Research Center were measured and sampled for all phosphorus constituents and total solids during and after precipitation events. During that period, from January 2013 to May 2017, the plots were planted with summer crops of corn and winter cover crops of cereal rye. Half the plots received broadcast manure applications, while the others had manure injected into the soil.

Researchers evaluated loads of total phosphorus, dissolved phosphorus, particulate phosphorus and total solids against flow volumes to learn how phosphorus and sediment losses differed between plots. Shallow-disk injection of manure was found to be more effective than broadcasting manure in promoting dilution of dissolved phosphorus and to a lesser extent, total phosphorus. The broadcast manure plots experienced more runoff of particulate phosphorus than did the injection plots.

Importantly for no-till advocates, no difference was detected between application methods for total solids in the runoff -- meaning manure injection, with its slight disturbance of the soil surface, did not cause sedimentation. No-till practitioners, who constitute slightly more than half of the dairy farmers in Pennsylvania, have been slow to adopt manure injection due to concerns about the practice causing sedimentation and muddying streams.

However, the precision and accuracy of the study, recently published in Agriculture, Ecosystems and Environment, was constrained by hydrologic variability, conceded Jack Watson, professor of soil science and soil physics, Penn State. His research group in the College of Agricultural Sciences conducted the study. Watson pointed out that the findings demonstrate that, even at a small scale, the effectiveness of a practice in accomplishing water quality benefits varies.

"This has been the case with previous phosphorus-mitigation field studies, as well," he said. "Even studies done with carefully constructed research plots like ours, which allow us to collect, measure, test and contrast runoff, are confounded by hydrologic variability."

But despite the variability, the findings showed that manure injection decreased the overall phosphorus losses, according to lead researcher Melissa Miller, a master's degree student in soil science when she conducted the study.

"When we looked at the total phosphorus losses from the plots, we were able to see a strong trend," she said. "It was revealed in both overland and subsurface flows following rain events."

That variability, however, complicates efforts to convince dairy farmers they should convert to manure injection, noted research team member Heather Gall, assistant professor of agricultural and biological engineering. She suggested that the practice, widely adopted, could help states comply with total maximum daily load stream regulations set by the U.S. Environmental Protection Agency to protect the Chesapeake Bay from nutrient pollution and associated algal blooms and dead zones.

"When we make recommendations to farmers about what they can do to improve runoff quality, we want to be able to tell them how well it will work," she said. "But how much manure injection will reduce the amount of phosphorus loss on a particular farm can depend on site characteristics, such as what kind of soil it has, what kind of crops are growing and the slope of the landscape. And so, we might not be able to tell a farmer definitively what to expect in terms of load-reduction benefits, making it difficult to make a compelling case that an investment in shallow-disc manure injection equipment will be worthwhile."

Watson explained that manure injection equipment is expensive and that it takes longer and requires more fuel for farmers to apply manure to their fields using injection than broadcasting or spreading it. For shallow-disc manure injection to be broadly implemented in the Chesapeake Bay drainage, he said, it will require substantial financial support from government or other off-farm sources. But it needs to be done, Watson believes.

"In the Mid-Atlantic and Northeast regions, we have a lot of dairy animals concentrated in a small area. We have all this manure that has to be gotten rid of and all the nutrients that go with it have to be disposed of on a small amount of land. It must be done in a way that will protect the Chesapeake Bay," he said.

And even if the phosphorus reductions are uncertain due to site variability, Watson added, there are the additional benefits from manure injection, such as reducing ammonia volatilization and reducing odor emissions, which have significant value as well.
-end-
Also involved in the research were Charlie White, assistant professor of soil fertility and nutrient management and Kathryn Brasier, professor of rural sociology, Penn State; Peter Kleinman, Anthony Buda, Lou Saporito and Tamie Veith, Pasture Systems and Watershed Management Unit, U.S. Department of Agriculture, Agricultural Research Service, University Park; and Clinton Williams, Arid-Land Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Maricopa, Arizona. The U.S. Department of Agriculture supported this work.

Penn State

Related Phosphorus Articles:

Graphene heterostructures with black phosphorus, arsenic enable new infrared detectors
MIPT scientists and their colleagues from Japan and the U.S.
Recovering phosphorus from corn ethanol production can help reduce groundwater pollution
Dried distiller's grains with solubles (DDGS), a co-product from corn ethanol processing, is commonly used as feed for cattle, swine and poultry.
Chemists have managed to stabilize the 'capricious' phosphorus
An international team of Russian, Swedish and Ukrainian scientists has identified an effective strategy to improve the stability of two-dimensional black phosphorus, which is a promising material for use in optoelectronics.
Life could have emerged from lakes with high phosphorus
Life as we know it requires phosphorus, and lots of it.
Reassessing strategies to reduce phosphorus levels in the Detroit river watershed
In an effort to control the cyanobacteria blooms and dead zones that plague Lake Erie each summer, fueled by excess nutrients, the United States and Canada in 2016 called for a 40% reduction in the amount of phosphorus entering the lake's western and central basins, including the Detroit River's contribution.
Reduce, reuse, recycle: The future of phosphorus
Societies celebrate the discovery of this important element in 1669.
Lack of reporting on phosphorus supply chain dangerous for global food security
A new study from Stockholm University and University of Iceland shows that while Phosphorus is a key element to global food security, its supply chain is a black box.
Hydrogenation of white phosphorus leads way to safer chemical technology
White phosphorus is well-known for being a highly toxic compound with suffocating scent.
Rice cultivation: Balance of phosphorus and nitrogen determines growth and yield
Cluster of Excellence on Plant Sciences CEPLAS at the University of Cologne cooperates with partners from Beijing to develop new basic knowledge on nutrient signalling pathways in rice plants.
Ammonia by phosphorus catalysis
More than 100 years after the introduction of the Haber-Bosch process, scientists continue to search for alternative ammonia production routes that are less energy demanding.
More Phosphorus News and Phosphorus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.