Nav: Home

Microbial manufacturing

February 06, 2019

For decades, scientists and doctors have known that bacteria in soil were capable of manufacturing streptozotocin, an antibiotic compound that is also an important treatment for certain types of pancreatic cancer.

What was less clear, however, was exactly how bacteria managed to do it.

Led by Emily Balskus, Professor of Chemistry and Chemical Biology, a team of researchers has untangled that process, showing for the first time that the compound is produced through an enzymatic pathway and revealing the novel chemistry that drives the process. The study is described in a February 7 paper published in Nature.

What makes the molecule such an effective anti-cancer agent, is a chemical structure known as a nitrosamine - what Balskus called the molecule's reactive "warhead."

Known to be highly reactive, nitrosamines have been shown to be toxic in a host of other compounds, and are most commonly known outside of cancer treatment as a carcinogens found in everything from tobacco to cured meats.

"This chemical motif has a great deal of biological relevance, and has been investigated thoroughly," Balskus said. "Until our work, the view of how this chemical motif was generated in biological systems involved non-enzymatic chemistry - it was just something that occurred under the right conditions."

Balskus and colleagues, however, suspected the story may be more complex, and set out to explore whether bacteria evolved a natural pathway to produce nitrosamine compounds.

"That's what we found in this paper," she explained. "We discovered the biosynthetic genes and the biosynthetic enzyme the bacteria use to build streptozotocin.

"And what that revealed was a big surprise in terms of how this functional group gets made," she continued. "Because it turns out it's made by an enzyme in a very different way than all other known routes to make nitrosamine. The reaction has very limited, if any, precedent in biological or synthetic chemistry."

What Balskus and colleagues found was an iron-dependent enzyme with two different domains, each of which catalyze different steps in the process.

"Both of these domains had been associated with other chemistry in enzymes, but in the context of this protein, both are doing things that are really new," Balskus said. "So overall, from a purely chemistry perspective, it's a very exciting enzyme."

It's equally exciting from a biological perspective, she added, because it shows for the first time that biology evolved a specific pathway for manufacturing nitrosamines.

"And when we search bacterial genomes for enzymes that look like this one, we see a lot of them, including some in gene clusters in human pathogens and in organisms that live in symbiosis with plants," Balskus said. "So it seems that we have underappreciated how nature might be using compounds like this. The discovery that there are dedicated enzymes for making this type of functional group, and the fact that it may be made by so many types of microbes suggest an important role for its biology."

Going forward, Balskus said, she is working with collaborators to understand how the enzyme works at the molecular level and to better understand the intermediate steps in the production of nitrosamine.

Balskus also hopes to investigate whether and how other bacteria - particularly human pathogens - rely on similar enzymes to produce compounds that are potentially toxic.

"The question we want to answer is whether this new type of enzyme is allowing human pathogens to do something that is damaging the host," she said. "Now that we've found these gene clusters, we can start to ask what these other N-nitrosamine containing compounds might be doing."
-end-
This research was supported with funding from the National Institutes of Health, a Cottrell Scholar Award, a Camille Dreyfus Teacher-Scholar Award, the Searle Scholars Program, Harvard University, the National Cancer Institute and the National Institute of General Medical Sciences.

Harvard University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...