Nav: Home

Atomic-scale simulation of antiarrhythmic drug interaction with cardiac cells

February 06, 2019

To unravel the mysterious mechanisms of drug potency for the treatment of cardiac arrhythmias, a group of researchers at UC Davis have developed novel simulations that provide insights on vital atomic-scale drug-cardiac cells interactions.

These simulations, published today in PNAS (Proceedings of the National Academy of Sciences), may lead the way to better development of new antiarrhythmic drugs targeting voltage-gated sodium (NaV) channels, specialized protein molecules in the cardiac cell membrane.

Sodium channels serve as gatekeepers regulating the electric activity of cardiac cells. When the electric signals coordinating the heartbeats are not working properly, the heart may experience irregular heartbeats and is considered in an arrhythmic state.

A class of antiarrhythmic drugs works on NaV channels to influence the heart's electrical activity and its beat. Yet, the longstanding failures in drug treatment of heart rhythm disturbances stem mainly from the inability to predict the impact of developed drugs on the activity of NaV and other cardiac ion channels.

"Before our study, there has been no effective preclinical methodology to differentiate useful or potentially harmful drugs at the molecular level," said Vladimir Yarov-Yarovoy, associate professor at the UC Davis Department of Physiology and Membrane Biology.

"To develop and screen novel drugs for treatment of cardiovascular diseases and to minimize their side effects, there is a need to understand the mechanism of antiarrhythmic drug interactions with NaV channels at an atomic scale," he said.

Thanks to several technological breakthroughs and an increasing number of available high-resolution structures of ion channels, such as NaV, researchers are now able to simulate these structures and to modulate the activity of the heart cells by studying their interactions at atomic resolution. The researchers were able to build a model of the human NaV channel based on the closely resembling structure of the electric eel NaV channel using Rosetta computational modeling software.

NaV channels open to allow the sodium ions to flow into the cardiac cells and close within milliseconds. When the drug molecules enter these channels, they bind tightly to the receptor site within the protein preventing the sodium ions from entering the cell and blocking the channel conduction. This change in conduction affects the heart's electric activity and its beat.

In the developed atomic model simulations, two drug molecules are seen transiting into the channel central pore and binding to the receptor site of the protein forming the "hot spots", areas where most favorable drug-protein interaction occur. This binding activity triggers what is known as a high affinity state of the channel.

"High affinity state of the channel is considered the most important state to study drug-protein binding mechanism. Now and for the first time, we can understand how this binding process happens at atomic scale," Yarov-Yarovoy added.

Multi-microsecond simulations of lidocaine (antiarrhythmic and local anesthetic drug) interacting with sodium channels revealed a channel pore access pathway through the intracellular gate and a novel access pathway through a relatively small lateral opening known as fenestration.

Combining molecular modeling software with simulations to study drug-channel interactions is a novel approach that allows future automated virtual drug screening. This technology can be applied to any ion channel and would benefit multiple treatments. Ultimately, this approach advances precision medicine by predicting individual patient responses to drug therapy based on the specific ion channel mutation the patient has.
Co-authors on this study are Colleen Clancy, Phuong Nguyen, Kevin DeMarco and Igor Vorobyov.

This research is supported by the National Institutes of Health (Grant R01GM116961), National Heart, Lung, and Blood Institute (Grant U01HL126273, R01HL128537, R01HL128170, OT2OD026580) and American Heart Association Predoctoral Fellowship (16PRE27260295).

University of California - Davis Health

Related Heart Cells Articles:

Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.
Skin-cells-turned-to-heart-cells help unravel genetic underpinnings of cardiac function
A small genetic study, published September 30, 2019 in Nature Genetics, identified a protein linked to many genetic variants that affect heart function.
Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.
A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.
Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.
Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.
How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.
Failing heart cells trigger self-protection mechanism
An unexpected finding that links a structural heart protein to gene regulation following heart stress suggests potential new avenues for developing heart failure therapies.
Can we teach heart cells to grow up?
Scientists have been trying to replace damaged heart tissue using lab-made heart-muscle cells, either injected or in patch form.
Heart attack: Substitute muscle thanks to stem cells
Scientists of University of Würzburg have for the first time succeeded in generating beating cardiac muscle cells from special stem cells.
More Heart Cells News and Heart Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab