Developed self-controlling 'smart' fuel cell electrode material

February 06, 2019

A research team led by Professor Kang Taek Lee in the Department of Energy Science and Engineering developed electrode material for a new form of high-performance Solid Oxide Fuel Cell (SOFC). Since SOFC, which generates electricity by reacting hydrogen (fuel) with oxygen in the air, emits only water after reaction, is ecofriendly, and has little restrictions in installation place, it is drawing limelight as a new and renewable energy technology that is appropriate for distributed generation . However, it has been difficult to obtain stable supply due to the rapid performance decline of electrode generating power amidst sudden stop and the suspension of fuel supply.

Professor Lee's team developed a new electrode material designed in a double perovskite structure to solve the stability of SOFC electrode. Inside the electrode material is planted with nickel (Ni), a catalyst which increases the oxidation reaction efficiency of hydrogen. Once the fuel cell operates, nickel voluntarily transfers outside the electrode surface, generating exsolution' which forms nano metal catalyst. The exsoluted nickel catalyst helps the high-efficient oxidation reaction of fuel cell, improving the stability and performance of fuel cell at the same time.

While exsolution has recently been researched among many scientists, most research has been focusing on temporary improvement of performance in the formation of metal nano catalyst and the catalyst's oxidation reaction. In contrast, Professor Kang Taek Lee's team focused on researching and developing a fuel cell electrode to have a stable oxidation reaction in oxidation-Redox Cycle, improving SOFC performance and advancing its technological commercialization.

Also, the research by Professor Lee's team is expected to open a new horizon for developing a new material electrode that guarantees high-performance and high-durability by proving the structural changes of reversible surface for the exsolution of nickel nano metal catalyst based on fuel cell supply. Professor Kang Taek Lee in the Department of Energy Science and Engineering said "While the electrode of existing SOFC has excellent performance, its performance declined rapidly when the hydrogen supply became unstable, which was difficult to recover the original performance. The development of electrode that brought high performance and improved the stability of oxidation-Redox Cycle will lead the commercialization of SOFC, through the control of voluntary nano metal catalyst exsolution."

Meanwhile, this research was published online on ACS Catalysis (Impact Factor=11.384), an authoritative international journal in the catalyst field on the 2nd. Also, this research was conducted with the support of Global Frontier Project by the Ministry of Science and ICT and the Energy Professional Nurturing Project of Korea Institute of Energy Technology Evaluation and Planning. Kyeong Joon Kim, a doctoral student in the Department of Energy Science and Engineering at DGIST and researcher Manasa K. Rath participated in the research as the co-authors, and Professor Seung-Tae Hong's team in the Department of Energy Science and Engineering at DGIST as well as Professor Jeong Woo Han's team in the Department of Chemical Engineering at POSTECH participated in this research as joint researchers.
-end-
For more information, contact:
Kang Taek LEE , Associate Professor
Department of Energy Science & Engineering
Daegu Gyeongbuk Institute of Science and Technology (DGIST)
E-mail: ktlee@dgist.ac.kr

Associated Links

Research Paper on Journal of JACS

Professor's Laboratory of Energy Science & Engineering at DGIST

Journal Reference

Kyeong Joon Kim, Manasa K. Rath, Hunho H. Kwak, Hyung Jun Kim, Jeong Woo Han, Seung-Tae Hong, and Kang Taek Lee, "A Highly Active and Redox-Stable SrGdNi0.2Mn0.8O4±δ Anode with in Situ Exsolution of Nanocatalysts", ACS Catalysis, Online Published on January 2nd, 2019.

DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.