Nav: Home

SUTD researchers developed new methods to create microfluidic devices with fluoropolymers

February 06, 2019

Currently, a wide range of applications has been demonstrated using microfluidic devices made of silicone rubbers (such as polydimethylsiloxane (PDMS)), including materials syntheses, separation and sorting, diagnostics and bioanalysis. The reason for the popularity of PDMS in academic laboratories is the simplicity of the fabrication and well-characterised properties of PDMS. However, PDMS are not compatible with strong organic solvents; they quickly swell silicone-based materials. To this end, microfluidic channels possessing chemical and solvent compatibility would be desirable.

A research team from the Singapore University of Technology and Design (SUTD), led by Assistant Professor Michinao Hashimoto, developed a simple method to fabricate microchannels using fluoropolymers - a general class of polymers including TeflonTM that are highly inert against the exposure to chemicals and solvents. The research group applied xurography (i.e. a method of digital fabrication to cut films with a motion-controlled razor blade to create stencils) to cut films of fluoropolymers and heat-press to from microchannels. It takes less than 1 hour to make microchannels from designing to assembling using this method.

The research team has identified proper conditions of heat pressing (i.e. temperature, time and pressure) for two common fluoropolymers: polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP). Furthermore, the team confirmed the fluoropolymer microfluidic channels' resistance to a set of organic solvents that would not be compatible with typical devices fabricated in PDMS.

Principal investigator, Dr Hashimoto said: "This work is the first demonstration to bridge the gap to rapidly fabricate microfluidic channels using fluoropolymers. Microchannels consisting of fluoropolymers can be useful in performing organic syntheses of materials and drugs as well as regulating adhesion of biological molecules, cells and bacteria. This method is extremely simple, and we believe it can be performed by literally any researcher--including non-engineers--for various applications that require the inert and non-reactive properties of the channels."

This new prototyping technique has been published in Biomicrofluidics, a reputable journal focused on research in unique microfluidic and nanofluidic techniques. An SUTD visiting students (Takuma Hizawa) and two postdoctoral researchers (Atsushi Takano, Pravien Parthiban) participated in this project together with the senior authors (Prof. Eiji Iwase, Waseda University, Japan, and Prof. Patrick Doyle, MIT, USA).

Singapore University of Technology and Design

Related Research Articles:

More Research News and Research Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...