Nav: Home

The unchanging viscosity of cells

February 06, 2020

The only thing that appears to be unchanging in living cells is that they are constantly changing. However, scientists from the IPC PAS have managed to show that there is a certain parameter that does not change. It's their viscosity. This research, although basic, may contribute to the development of completely new diagnostic and therapeutic methods.

It would seem that during the life of cells - DNA replication, protein formation, the constant changes in their quantity, metabolites, etc., such drastic transformations take place within them that the viscosity related to the ratio of water to the number of biological molecules in the cell should, (when looked at intuitively), change. This is what many scientists thought, including the authors of the paper published in Scientific Reports. "We wanted to examine how the viscosity of cytoplasm changes at various important moments in a cell's life, such as during division. That's why the result, i.e. the constancy of viscosity, was a complete surprise to us," says Dr Karina Kwapiszewska.

The measurement itself was a difficult and tedious process. A full cell cycle takes about 24 hours, and although cells can be synchronized like dancers in a ballet, i.e. made to all divide roughly at the same time, they cannot be persuaded to wait for an observer to take a picture of them. They constantly dance to their own inner music.

"Here a big nod to my colleague, Dr. Krzysztof Szczepa?ski, who spent more than one night carrying out fluorescence correlation spectroscopy measurements. They have to be performed every half hour during the whole cell cycle, and the cell won't wait until the morning to divide," says Dr Kwapiszewska. "Thanks to him and his perseverance we mapped the viscosity throughout the entire cycle. And that's with the right number of repetitions. This is the only way we could prove that what we measured was an actual parameter, not an artefact," she adds.

What's more, the IPC PAS scientists discovered that the cell's viscosity remains constant regardless of whether the cell comes from the lung or e.g. the liver, although these are very different tissues. And since it is constant, this means that the cell must need it to be so for a purpose. Especially since the size of cells can vary within a single population (e.g. skin cells) even ten-fold and this does not matter to them as much as their viscosity. So there must be a mechanism that regulates it.

The viscosity of a medium is undoubtedly very important for biochemical processes. Simply put, the higher the viscosity, the harder it is for particles to meet in order to react. Cells must actively regulate their viscosity otherwise reactions would be slower in some conditions and faster in others. And if one of the reactions were to slow down too much - the whole system could fall apart and the cell would never be able to restore its balance. "In one of our team's earlier papers (Soza?ski et. al., Phys Rev Lett 2015) it was shown that only a 6-fold increase in viscosity (this really isn't much) is sufficient to stop the entire active transport in a cell," explains Dr Kwapiszewska.

And here we come to the potential, though at present distant, applications of this discovery. Since an increase in viscosity inhibits life processes in the cell then perhaps this can be used, for example, to create therapeutics against cancer cells. The sort that would employ physical processes instead of, for example, inhibiting DNA replication.

"We also suspect that some neurodegenerative diseases may be caused by a local increase in viscosity in cells," says the author. "So, compensating for this could be a way to stop damage in Parkinson's or Alzheimer's disease and improve a patient's prognosis."

Now researchers want to find out how viscosity changes during cell death and whether this change in viscosity is the result or the cause of the process itself.
The research was financed by the MAESTRO grant, no. UMO-2016/22/A/ST4/00017, headed by Professor Robert Ho?yst.

The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialize specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

LINKS: The website of the Institute of Physical Chemistry of the Polish Academy of Sciences. Press releases of the Institute of Physical Chemistry of the Polish Academy of Sciences.

Institute of Physical Chemistry of the Polish Academy of Sciences

Related Living Cells Articles:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.
Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.
'Seeing' and 'manipulating' functions of living cells
Toyohashi University of Technology has given greater functionalities to atomic force microscopy (AFM).
Terahertz radiation can disrupt proteins in living cells
Researchers from the RIKEN Center for Advanced Photonics and collaborators have discovered that terahertz radiation, contradicting conventional belief, can disrupt proteins in living cells without killing the cells.
CSIC researchers use whole living cells as 'templates' to seek for bioactive molecules
A study performed by researchers at the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) from the Spanish National Research Council (CSIC) pioneers the use of whole living cells (human lung adenocarcinoma) in dynamic combinatorial chemistry systems.
A new tool to map the flow of info within living cells
UNC-Chapel Hill, UT Southwestern Medical Center researchers created a way to study the intricacies of intercellular signaling -- when, where, and how tiny parts of cells communicate -- to make cells move.
Genetically engineering electroactive materials in living cells
Merging synthetic biology and materials science, researchers genetically coaxed specific populations of neurons to manufacture electronic-tissue 'composites' within the cellular architecture of a living animal, a new proof-of-concept report reveals.
Physics of Living Systems: How cells muster and march out
Many of the cell types in our bodies are constantly on the move.
Bioprinting: Living cells in a 3D printer
A high-resolution bioprinting process has been developed at TU Wien (Vienna): Cells can now be embedded in a 3D matrix printed with micrometer precision -- at a printing speed of one meter per second, orders of magnitude faster than previously possible.
Living cells engineered to be computing and recording devices
Cells can be viewed as natural minicomputers that execute programs encoded in their DNA.
More Living Cells News and Living Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.