Nav: Home

Static electricity as strong as lightening can be saved in a battery

February 06, 2020

Static electricity shock which occurs more often in winter is unpleasant. When two different objects are in repeated contact, it causes friction which then creates static electricity.

This can be found easily in our everyday actions and it is very annoying even between the lovers. In fact, there is no electric current flowing in static electricity but tens of thousands of volts occurs, equal to the power of lightening. Then, can we collect static electricity for use? The answer is yes.

Prof. Dong Sung Kim and his PhD candidate student, Donghyeon Yoo from POSTECH Mechanical Engineering Department and Prof. Jae-Yoon Sim and his PhD student Seoulmin Lee from POSTECH Department of Electronic and Electrical Engineering jointly with the research teams of Prof. Woonbong Hwang of POSTECH and Dongwhi Choi of Kyung Hee University developed a new technology to increase the total amount of energy generated by a 'triboelectric nanogenerator' which can converts static electricity into power. In the meantime, they also succeeded in developing an integrated circuit that makes this energy into practical electric energy.

Energy harvesting is a technology that harvests and converts energies, which occur in everyday life such as human actions, light, heat, vibration of an object and electromagnetic wave and disappear quickly, into usable energies. Among many of the energy harvesting technologies, a triboelectric nanogenerator is a device that obtains static electricity, which can be found when two different materials are in contact and detached.

So far, there have been many studies on triboelectric nanogenerator, however, it has been difficult to commercialize because of its limitations such as small quantity of energy converted from harvested static electricity and that power is only generated when there is friction.

The joint research team fabricated the nano surface structure by using nanoimprinting process to intensify friction under same contact and separate condition. They also used poling process to produce more static electricity under the same given frictional condition due to ease of electron transfer between two objects.

Nanoimprinting process is a method that forms nano surface structures in thermoplastic polymer by stacking nano molds with the polymer films, and then heating under a certain pressure. Poling process is a method that rearranges molecular structures orderly by changing directions of dipoles of the materials in contact and by applying high voltage.

In the meantime, the joint research team successfully invented an integrated circuit that converted temporary and unstable electric energy generated by a triboelectric nanogenerator into reliable power source. They demonstrated that even when 2.5 μW of energy was input, the conversion efficiency recorded over 70%. It was the first time the team verified that stable power of 1.8V was obtained without external power supply when this newly developed integrated circuit was used. This amount of power was enough to operate sensors of thermo and humidity meters, a calculator and more.

This research was the first demonstration of a triboelectric nanogenerator fabricated by nanoimprinting process using heat and pressure and poling process simultaneously. By using these newly introduced triboelectric nanogenerator and integrated circuit, it is possible to increase the total amount of electric energy produced by obtained static electricity and to convert it into reliable energy. It is expected that this technology can be a reference for future development of a self-powered system which operates sensors without external power source.

Prof. Dong Sung Kim said, "The conventional triboelectric nanogenerators faced challenges in obtaining reliable electric power because it used an auxiliary power source to operate commercial integrated circuit or to operate itself independently. However, our findings can overcome these limitations by converting static electricity into reliable power which can be used instantly. It is also meaningful in a way this research was conducted jointly with colleagues from various fields of academic discipline."
-end-
The research was supported by Agency of Defense Development and National Research Foundation of Korea. The research paper was recently posted on the website of Nano Energy, one of the prestigious journals in physics and chemistry.

Pohang University of Science & Technology (POSTECH)

Related Technology Articles:

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.
Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.
Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.
Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.
April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.