Nav: Home

Scientists create 'Chemical gardens' that can be used as bone substitute materials

February 06, 2020

A new way of making bone-replacement materials that allows for cells to grow around and inside them has been developed by researchers at the University of Birmingham.

The team adopted a novel approach called chemobrionics, in which chemical components are controllably driven to react together in specific ways, enabling the self-assembly of intricate bio-inspired structures.

Scientists first observed these life-like 'chemical gardens' several hundred years ago, but recent renewed interest in the field of chemobrionics has seen researchers using these techniques to design new materials at the micro- and nanoscale.

The Birmingham researchers set out to explore whether chemobrionics could also be harnessed for biotechnological applications.

Lead author Erik Hughes, of the School of Chemical Engineering at the University of Birmingham, explains "We set out to investigate if chemobrionics could be used to form architectures that are chemically and structurally similar to human bone. Once a method of generating such structures is established, the natural next step forward is to evaluate if chemobrionic materials can provide ideal frameworks for bone regeneration."

The team used a calcium-loaded gel layered under a phosphate solution, and succeeded in growing long microscale hollow tubes of hydroxyapatite material that is similar in composition to natural bone. Hydroxyapatite is commonly used as a bone substitute material, but it is typically manufactured as a powder or as a hard block, which then needs to be shaped with further processing.

The individual structures grown by the Birmingham team are approximately as thick as a strand of human hair. These tubes possess distinctive features, including porous surfaces that promote interactions with cells. Published in RSC Biomaterials Science, the study demonstrates the similarity of the tubes to many of the structures found in bone tissue, such as osteons - long cylindrical channels in bone that house blood vessels.

"We can find lots of examples of chemobrionic principles at work in nature," explains Erik. "For example, on the ocean floor, we see hot mineral-rich fluids emitted from hydrothermal vents that react with the cool seawater to form chimney-like structures. We are exploiting these same mechanisms to make these new structures for applications in regenerative medicine."

The team have tested the ability of the tubes to support cell attachment, viability and growth in the laboratory using stem cells. They were able to show extensive spreading of the cells upon and extending within the tubes after only 48 hours, indicating favourable cell-material interactions.

"Using chemobrionics to produce materials that are biocompatible is a relatively new approach, but we are really excited by its potential," says co-first author Miruna Chipara, who is also based in the School of Chemical Engineering at the University of Birmingham. "In particular, the way these structures promote cellular integration means they could be widely useful for bone regeneration".

The next steps for the researchers include carrying out further tests to demonstrate the properties of the tubular materials and how they may be modified to improve tissue regeneration. The researchers are hopeful that their work will lead to the development of a new class of chemobrionic bone substitute materials.
-end-
Notes to editor:

* The University of Birmingham is ranked amongst the world's top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.

* Hughes et al (2019). 'Chemobrionic structures in tissue engineering: Self-assembling calcium phosphate tubes as cellular scaffolds'. RSC Biomaterials Science.

University of Birmingham

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.