The trouble with hybrids

February 07, 2008

Hybrid electric vehicles that run on both conventional gasoline and stored electricity can be no more than a stop gap until more sustainable technology is developed, according to researchers in France. Writing in the Inderscience publication International Journal of Automotive Technology and Management, they suggest that the adoption of HEVs might even slow development of more sustainable fuel-cell powered electric vehicles.

Jean-Jacques Chanaron Research Director within the French National Centre for Scientific Research (CNRS) and Chief Scientific Advisor at the Grenoble School of Management and Julius Teske at Grenoble, question strongly whether the current acceptance of hybrid vehicle technology particularly in the USA is in any way environmentally sustainable.

The researchers have analyzed the spread of this technology including the non-financial drivers for its adoption. They point out that most manufacturers are rapidly integrating hybrid electric vehicles into their technology portfolio, despite the absence of significant profitability.

They add that the misinformed craze for hybrid vehicles especially in the USA, and increasingly in Japan and Europe, and potentially in China, could represent a red light for more innovative technologies, such as viable fuel-cell cars that can use sustainably sourced fuels, such as hydrogen. They concur with earlier studies that suggest that hydrogen fuel cells will not be marketable in high volumes before at least 2025. This could, however, be too late for some models of climate change and emissions reduction. They also point out that even fuel cell technology has its drawbacks and much of the marketing surrounding its potential has emerged only from the hydrogen lobby itself.

"There is a general convergence of strategies towards promoting hybrid vehicles as the mid-term solution to very low-emission and high-mileage vehicles," the researchers assert, "this is largely due to Toyota's strategy of learning the technology, while building up its own 'quasi-standard', thanks to its high-quality and reliability reputation and its high market share on the North American market." They add that, "Such a convergence is based more on customer perception triggered by very clever marketing and communication campaigns than on pure rationale scientific arguments and may result in the need for any manufacturer operating in the USA to have a hybrid electric vehicle in its model range in order to survive."

Moreover, political pressures also play a significant part. The three major US manufacturers - GM, Ford, and Chrysler - recently urged President Bush to financially and politically support a national technological solution for hybrids; this was independent of the currently dominant solutions initiated by Toyota. The researchers concede that, "The quest for low emission, clean, and high-mileage vehicles is on its way and should be at the top of the manufacturers' agenda," they say. However, they suggest that the technology, marketing, and public perception leads to one overriding problem: Is a hybrid strategy sustainable in the long run? Chanaron and Teske think not.

The complexity and high cost of the hybrid technology is also playing against itself," they say, "There is a huge strategic dilemma for the key players of the automotive industry where a mistake in technology decision-making might turn even a big player into a take-over candidate. The next five years will provide industry observers with more accurate trends and success or failure factors."
-end-


Inderscience Publishers

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.