Nav: Home

Melanoma research breakthrough gives hope to treatment

February 07, 2017

A QUT-driven project has identified the way in which melanoma cells spread, opening up new pathways to treatment via drugs to 'turn off' the invasive gene.

Led by Dr Aaron Smith from QUT's School of Biomedical Sciences within the Institute of Health and Biomedical Innovation at the Translational Research Centre, the project results have just been published in international journal EBiomedicine and could offer a new avenue for cancer treatment.

"Cancer is characterised by uncontrolled growth of cells but if uncontrolled growth was the only problem then cancer cells would be easily treated with surgery in most cases," said Dr Smith who collaborated with colleagues from UQ, QIMR and Oxford University.

"What makes cancer deadly is its tendency to invade tissue and migrate to other regions of the body, a process we call metastasis. Metastatic melanoma is one of the most aggressive and difficult to treat of all cancer types.

"By examining melanoma tumour samples we know that some cells are primarily proliferative and some are more invasive and migratory. We also know some cells can switch between those two behaviours; in other words a cell capable of establishing a new tumour at the same site can change to be more invasive and facilitate the spread the cancer to other parts of the body.

"What we did not know though was the reason why this happened. Our research project has discovered the mechanism by which those melanoma cells switch behaviours.

"This is an important breakthrough as we have identified a 'druggable' target as part of this process. Preventing this switch to invasive behaviour will enable us to prevent metastatic spread of melanoma and potentially other cancer types as well."

Dr Smith explained the two types of behaviours were marked by the expression of two different regulatory factors MITF (proliferating cells) and BRN2 (invasive).

"BRN2 function reduces MITF expression to slow down proliferation and put the cells into invasive mode," he said.

"Our project has identified a pathway that allows BRN2 to do this, firstly by increasing the expression of another regulatory factor called NFIB that further controls an invasive program in these cells.

"An important target of NFIB is an enzyme called EZH2 which then produces global (wide ranging) changes to the cells activity. EZH2 favours the expression of invasive genes and also turns "off" MITF to prevent proliferation, further re-enforcing the invasive capability of the tumour cells.

"Once cells migrate away from the tumour we believe they no longer receive the signal that triggered the switch so the system re-sets to the MITF driven proliferation state which will then allow a new tumour to form at the new site.

"We have evidence the NFIB-EZH2 pathway may also underpin metastasis of other cancer types as well such as lung cancer. The good news is there are drugs to chemically inhibit EZH2 which are already in pre-clinical trials and which could be used to block the invasion. "
-end-
Media contact: Amanda Weaver, QUT Media, 07 3138 9449, amanda.weaver@qut.edu.au
After hours: Rose Trapnell, 0407 585 901, media@qut.edu.au

Queensland University of Technology

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...