Nav: Home

Biotechnologists look to bacteria in extremely cold environments for 'green' detergents

February 07, 2018

Despite subzero temperatures, increased UV radiation, little liquid water, and few available nutrients, bacteria living at Earth's poles thrive. They manage it thanks in part to molecules called biosurfactants, which help them separate the complex substrates they feed on into easy-to-metabolize droplets. On February 7 in the journal Trends in Biotechnology, researchers review the hypothetical uses of these cold-loving molecules for "green" detergents, fuel additives, and other applications.

"They really have a tremendous potential," says microbiologist and biotechnologist Amedea Perfumo of the GFZ German Research Centre for Geosciences. Biosurfactants are safe to release into the environment and can be produced using affordable waste products such as olive oil byproduct and cooking oils. They also work in lower concentrations, so we need less of them to get the same job done. But the ones produced by extremophilic bacteria have what Perfumo calls "an extra feature": they work at freezing temperatures.

This stability has huge implications for how these molecules could be used. Biodiesel, which is produced from waste materials and cleaner burning than gasoline, might be a viable fuel alternative if a biosurfactant additive could improve its sluggish flow in cold temperatures. Cold-active biosurfactant detergents would mean we could go green by reducing washing temperatures, without worrying that our clothes wouldn't get clean. These biosurfactants could also be used to harvest natural gas from cage-like ice crystals called gas hydrates or to clean up pollution spills in colder regions of the ocean.

According to Perfumo, there has never been a better time than now to advance research into these biotechnological applications. "The cold regions of our planet are actually becoming more reachable for exploration and for scientific research," she says. And the growing availability of extremophilic bacteria in culture collections has also improved accessibility. "Scientists who don't have the option to go personally to the polar regions and take samples can simply get organisms from culture collections. It's in reach for everybody."

Cold-active enzymes, which are also produced by extremophilic bacteria, have already begun to be produced industrially. When asked why this isn't true of cold-active biosurfactants, Perfumo doesn't have a good answer. "It's quite a question mark for me," she says, because she sees so much potential for these molecules. She does acknowledge, however, that there is still a lot of work that needs to be done to determine the most useful bacteria, the conditions at which they will produce the highest yields, and whether it might be possible to produce biosurfactants as part of the process that produces enzymes.

"We still only know a little," she says. Nonetheless, she's hopeful. "I think that with a little work and a little patience and especially with joint forces, we can take a bold step in the near future. It will really be a grand challenge for science and technology."
-end-
This work was supported by European Union's Horizon 2020 research and innovation programme.

Trends in Biotechnology, Perfumo, A. et al.: "Going Green and Cold: Biosurfactants from Low Temperature Environments to Biotechnology Applications" http://www.cell.com/trends/biotechnology/fulltext/S0167-7799(17)30280-9

Trends in Biotechnology (@TrendsinBiotech), published by Cell Press, is a monthly review journal of applied biosciences. It addresses what is new, significant, and practicable in the integrated use of many biological technologies--from molecular genetics to biochemical engineering. Visit: http://www.cell.com/trends/biotechnology. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...