Seafloor data point to global volcanism after Chicxulub meteor strike

February 07, 2018

EUGENE, Ore. - Feb. 7, 2018 - A record of volcanism preserved along ancient mid-ocean ridges provides evidence for heightened worldwide magmatic activity 66 million years ago just after the Chicxulub meteor struck Earth, according to University of Oregon scientists.

The research, published in Science Advances, points to changes in the strength of gravity above the seafloor, which indicate a transient period of increased volumes of magma being released along ridges that mark the oceanic boundaries of tectonic plates.

Lead author Joseph Byrnes, a former UO doctoral student, says that this global volcanic activity was likely triggered by strong seismic waves radiated from the meteorite impact site. Subsequently accelerated volcanism, he said, likely would have been active during the mass extinction of the world's non-avian dinosaurs.

Volcanism, particularly a massive outpouring of basalt recorded by the Deccan Traps in India, has been in and out of the extinction debate. Rare volcanic events at such a scale are known to cause catastrophic disturbances to Earth's climate and, when they occur, they are often linked to mass extinctions.

Since evidence of the meteor strike near present day Mexico surfaced in the 1980s, scientists have debated whether the impact or the Deccan Traps volcanic eruptions was the primary driver for extinction of the dinosaurs.

Progressively more accurate dating methods indicate that while the Deccan Traps eruptions were active during the mass extinction, they actually began significantly before the Chicxulub impact, said Leif Karlstrom, a professor in the UO's Department of Earth Sciences and co-author on the study with Byrnes.

The meteor is closely aligned in time with the onset of mass extinction, seeming to indicate a dominant role, he said. Still, the near coincidence in time of such globally catastrophic events continues to spur debate.

In 2015, researchers at the University of California, Berkeley, proposed that the two events might be connected. They suggested that Chixculub may have modulated distant volcanism by sending seismic waves through the Earth and accelerating volcanic activity in the Deccan Traps. Similar to the impacts that normal tectonic earthquakes sometimes have on wells and streams, Karlstrom said, the study proposed that powerful shaking liberated magma stored in the mantle beneath the Deccan Traps and caused the largest eruptions there.

The new National Science Foundation-supported study at the UO adds another layer to the story, said Karlstrom, who also co-authored on the UC-Berkeley research. It suggests that other volcanic activity around the world was triggered by the meteor. Seismic waves moving through the Earth, he said, may have accelerated volcanism already occurring along mid-ocean ridges.

"Our work suggests a connection between these exceedingly rare and catastrophic events, distributed over the entire planet," Karlstrom said. "The meteorite's impact may have influenced volcanic eruptions that were already going on, making for a one-two punch."

The findings emerged as Byrnes, now a postdoctoral researcher at the University of Minnesota, discovered the evidence for volcanic activity by analyzing publicly available global datasets, including two updated in the last decade, on free-air gravity, ocean floor topography and tectonic spreading rates.

In his analyses, Byrnes divided the seafloor into one-million-year old groupings, constructing a record back to 100 million years ago. At about 66 million years, he found evidence for a "short-lived pulse of marine magmatism" along ancient ocean ridges. This pulse is suggested by a spike in the rate of the occurrence of free-air gravity anomalies seen in the dataset.

Free-air gravity anomalies, measured in milligals, account for variations in gravitational acceleration, found from satellite measurements of additional seawater collecting where the Earth's gravity is stronger.

Excess matter on the ocean floor, such as new magma, is a primary cause of elevated marine gravity anomalies. A gal reflects a change in the rate of motion of a centimeter, about 0.4 of an inch, per second squared. Byrnes and Karlstrom found changes in free-air gravity anomalies of between five and 20 milligals associated with seafloor created in the first million years after the meteor.

"We found evidence for a previously unknown period of globally heighted volcanic activity during the mass-extinction event," Byrnes said. "This study does not say precisely that this volcanic activity is what killed the dinosaurs. What we are adding to the conversation is global volcanic activity during the known environmental crisis."

The gravity data analyzed in the research came from the Scripps Institution of Oceanography at the University of California, San Diego, the seafloor ages from the EarthByte group at the University of Sydney, and seafloor elevation from the National Geophysical Data Center of the National Oceanic and Atmospheric Administration.
-end-
Sources: Leif Karlstrom, assistant professor, Department of Earth Sciences, University of Oregon, 541-346-4323, leif@uoregon.edu, and Joseph Byrnes, postdoctoral researcher, Department of Earth Sciences, University of Minnesota, 612-626-3697, jsbyrnes@umn.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

About Leif Karlstrom: http://pages.uoregon.edu/leif/

Department of Earth Sciences: https://earthsciences.uoregon.edu/

University of Oregon

Related Volcanic Activity Articles from Brightsurf:

Volcanic eruptions have more effect in summer
Modeling shows that volcanic eruptions can cause changes in global climate, if the timing is right.

Piecing together the Alaska coastline's fractured volcanic activity
Among seismologists, the geology of Alaska's earthquake- and volcano-rich coast from the Aleutian Islands to the southeast is fascinating, but not well understood.

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

Indian monsoon can be predicted better after volcanic eruptions
Large volcanic eruptions can help to forecast the monsoon over India - the seasonal rainfall that is key for the country's agriculture and thus for feeding one billion people.

Photos may improve understanding of volcanic processes
The shape of volcanoes and their craters provide critical information on their formation and eruptive history.

Volcanic activity and changes in Earth's mantle were key to rise of atmospheric oxygen
Evidence from rocks billions of years old suggest that volcanoes played a key role in the rise of oxygen in the atmosphere of the early Earth.

Volcanic eruptions reduce global rainfall
POSTECH Professor Seung-Ki Min's joint research team identifies the mechanism behind the reduction in precipitation after volcanic eruptions.

A new tool to predict volcanic eruptions
Earth's atmosphere is made up of 78% nitrogen and 21% oxygen, a mixture that is unique in the solar system.

Oral traditions and volcanic eruptions in Australia
In Australia, the onset of human occupation (about 65,000 years?) and dispersion across the continent are the subjects of intense debate and are critical to understanding global human migration routes.

Volcanic ash sparks a new discovery
Imagine you're getting ready to fly to your favorite vacation destination when suddenly a volcano erupts, sending massive amounts of volcanic ash into the atmosphere, and forcing the cancellation of your flight.

Read More: Volcanic Activity News and Volcanic Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.