Acute treatment suppresses posttraumatic arthritis in ankle injury

February 07, 2018

A University of Iowa study has identified a method for inhibiting the occurrence of an aggressive form of arthritis that frequently develops following a severe traumatic injury. The preclinical work demonstrates the potential for preventing posttraumatic osteoarthritis (PTOA) by targeting very early damage after fractures in an animal model of this type of injury. These types of fractures in a load-bearing joint can lead to arthritis as quickly as two years after injury.

PTOA is present in some 5.6 million people in the United States. The disease occurs when cartilage is destroyed in a joint, leading to life-long pain and disability. The young and active patients who are disproportionately likely to experience these injuries are not good candidates for joint replacements, so preventing PTOA in this group is a particularly compelling need.

"The time to complete joint destruction can be as fast as two to four years," says the study's corresponding author, Mitchell Coleman, PhD, research assistant professor of orthopedics and rehabilitation in the UI Carver College of Medicine. "That can be devastating for an 18-year-old who injures an ankle falling off a ladder or playing sports."

Previous work has shown that relatively few chondrocytes--the cells that make up healthy cartilage tissue--are killed at the moment of impact when a joint is fractured. Instead, cell death increases in the 48 hours following the injury, suggesting that biologic activity unleashed by the impact may contribute to early causes of disease.

The University of Iowa study, published Feb. 7 in Science Translational Medicine, focused on reducing oxidative stress in the mitochondria of chondrocytes after injury. Mitochondria are organelles that serve as the powerplant of a cell and are also an important biological source of oxidants. During normal mitochondrial function, only small, relatively innocuous concentrations of oxidants are produced.

The lab of James Martin, PhD--senior author of the study and UI associate professor of orthopedics and rehabilitation and biomedical engineering--has a long-standing research focus on severe mechanical injuries that lead to intense increases in mitochondrial metabolism. These increases result in larger, more damaging concentrations of oxidants and oxidative damage, capable of contributing to rapid PTOA development.

Using a pig model of ankle fracture, the researchers employed two approaches to limit oxidative damage in the chondrocytes: inhibiting mitochondrial metabolism with amobarbital, and boosting antioxidants in the chondrocytes with N-acetylcysteine (NAC).

"We demonstrated that the posttraumatic osteoarthritis that occurs in an ankle after a severe injury can be significantly blunted by inhibiting mitochondrial metabolism or adding key antioxidants immediately after injury," Coleman says. "These treatments were only given twice, once right after injury and once a week later. No chronic therapy was used. Our data suggests that there might be a way to treat people acutely after they break their ankle to prevent PTOA."

By using a pig model instead of the customary mouse model, the researchers were able to closely mimic the treatment a person would receive following a traumatic ankle fracture and test the safety and effectiveness of the treatment in a large animal model. This approach enhances the translational possibilities of the researchers' work.

The group has applied for grant support to conduct preliminary clinical trials of the approach at multiple institutions.

In addition to Coleman and Martin, the team included UI researchers Jessica Goetz, Marc Brouillette, Dong Rim Seol, Michael Willey, Emily Petersen, Nathan Hendrickson, Jocelyn Compton, Behnoush Khorsand, Angie Morris, Aliasger Salem, and Douglas Fredericks. The team also included Todd McKinley from Indiana University and Hope Anderson from Wellesley College.

The research was supported in part by funding from the U.S. Department of Defense and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health.

Several of the research team, including Coleman and Martin, are inventors on a patent held by the University of Iowa Research Foundation that covers the use of the reverse thermal hydrogels for prevention of PTOA. Morris serves on the advisory board of Cartilagen LLC, and Martin serves as scientific advisor to Cartilagen LLC, which licenses the patent.
-end-


University of Iowa Health Care

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.