Nav: Home

Deep sea reveals linkage between earthquake and carbon cycle

February 07, 2019

An international team led by the Innsbruck geologists Arata Kioka, Tobias Schwestermann, Jasper Moernaut, and Michael Strasser could quantify for the first time the entire trench-wide volume of marine sediments that were remobilized by the magnitude 9 Tohoku-oki earthquake in 2011 and transported into the up to 8 km deep Japan Trench. This was facilitated within a project funded by the Austrian Science Fund (FWF) and in collaboration with researchers from Geological Survey of Japan of the National Institute of Advanced Industrial Science and Technology (AIST), JAMSTEC (Japan Agency for Marine-Earth Science and Technology), The City University of New York, MARUM (Centre for Marine Environmental Sciences, University of Bremen) and ETH Zurich, through integrating analyses of samples and data collected during several offshore research expeditions conducted between 2012 and 2016. Along with carbon content measurements, they could estimate the total carbon mass of more than 1 Tg (1 teragram = 1 million tons), triggered by one single tectonic event and transported to these water depths. "The results surprised us and our colleagues," said Tobias Schwestermann, PhD candidate at the Department of Geology at the University of Innsbruck. "This is much higher than expected from carbon fluxes observed in other deep-sea trench systems worldwide," continues Schwestermann. Another example clearly illustrates the extent of the result: The Ganges-Brahmaputra, one of the world's largest river system, transports about 4 Tg of carbon per year to the ocean. The fact that only one single tectonic event can cause about a quarter of this carbon flux, implying a potential global significance, highlights the importance of the carbon cycle in the deep sea. "The results show that when we talk about the global carbon cycle, we also have to think about the deepest and most-underexplored deep-sea trenches of our world's oceans in the future," says Michael Strasser, Professor at the Department of Geology.

First trench-wide quantification of organic carbon mass in the deep sea

Worldwide, there are only sixteen regions with water depths of more than 6 km. "All in all, the deep sea is arguably even less explored than the moon. This is exactly what fascinates us," says Arata Kioka, postdoc at the Department of Geology. The first trench-wide quantification of organic carbon mass at such water depths was enabled by various measurement methods, some of which were used for the first time in the deep sea. "One of the research vessels, the German Sonne, was also decisive for the results. It is one of the technically best equipped research vessels currently available," says Arata Kioka. First, the team carried out high-resolution bathymetric surveys and sub-seafloor structure imaging. To analyze the carbon content, new sediment cores were taken from the Japan Trench.

Continuing project

The latest results motivate the geologists to undertake further research expeditions to investigate the deep sea even further. The International Ocean Discovery Program (IODP) will soon give them the opportunity to do so. This is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. Michael Strasser is the lead proponent of an IODP proposal, which will be implemented in 2020, collecting long cores from the Japan Trench to study past earthquakes and their impact on the evolution and processes in deep sea trenches.
-end-


University of Innsbruck

Related Carbon Articles:

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.
Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?
First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
How much carbon the land can stomach with more carbon dioxide in the air
Researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.
'Charismatic carbon'
According to the Intergovernmental Panel on Climate Change (IPCC), addressing carbon emissions from our food sector is absolutely essential to combatting climate change.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Can we still have fun if the UK goes carbon neutral?
Will Britain going carbon neutral mean no more fun? Experts from the University of Surrey have urged local policy makers to put in place infrastructure that will enable people to enjoy recreation and leisure while keeping their carbon footprint down.
Could there be life without carbon? (video)
One element is the backbone of all forms of life we've ever discovered on Earth: carbon.
More Carbon News and Carbon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.