Nav: Home

Breast cancer cells shifted into HER2 positive status with bold new strategy

February 07, 2019

JUPITER, FL -- Feb. 7, 2019 -- When women or men receive the worrisome diagnosis of breast cancer, that news comes with an important piece of information, namely, whether their cancer is HER2-positive or HER2-negative. It can be especially difficult to hear that one's cancer is HER2-negative, because it means an effective group of targeted anti-cancer drugs isn't available.

A new study from the lab of Scripps Research chemist Matthew D. Disney, PhD, suggests that in the future, that might not be the final word on the matter. Writing in the Journal of the American Chemical Society, Disney's group describes shifting three different cancer cell lines from HER2-negative status to HER2-positive status with the addition of a selective micro-RNA binding molecule they referred to as TGP-515.

It's a revolutionary idea, that a cancer's genotype might not have to be the limiting factor in its range of targeted treatment options. However, this is just a first step in a long series of work ahead to enable the technology to benefit cancer patients, Disney notes.

The team designed their compound by using a mathematical system Disney developed called Inforna. The compound rendered the cancer cells vulnerable to both Herceptin (trastuzumab) and Kadcyla (ado-trastuzumab emtansine), both targeted therapeutics. Meanwhile, it left healthy breast cells unaffected.

"It's possible that precision medicines like Herceptin can be made available to a wider group of people by altering gene expression with therapeutics that bind not to the proteins but to noncoding RNA," Disney says.

About 20 percent of people diagnosed with breast cancer have the HER2-positive mutation, which means the surface of their cancer cells have more of the HER2 protein on them. While that mutation is associated with faster growing, more aggressive cancers, since 1998 it has come with good options for effective treatment. Since the monoclonal antibody drug Herceptin was introduced, 10-year disease-free survival rates for the HER2-positive breast cancer subtype surged to 84 percent.

For breast cancer patients with dwindling options, switching on HER2 sensitivity might be life-changing, Disney says.

"This study is proof of concept for the strategy of creating sensitivity to a drug where one otherwise wouldn't exist," Disney says. "It also validates the notion that transcription of genes can be modulated via small molecule compounds engineered to bind to relevant noncoding RNA. This means that supposedly untreatable diseases may, one day, be readily treatable. There is a long way to go for this to get to patients, however."

There were many challenges that had to be overcome to create the effective compound, says first author Matthew G. Costales, a Scripps Research graduate student. Unintended targets had to be identified and blocked, and selectivity engineered into the molecule. Disney's computational system, Inforna, guided the efforts.

The first compound the Inforna database highlighted bound to two different micro RNAs, both 885 and 515. That could have posed problems. Further refinement made it clear that a compound could be designed to be selective for one micro RNA but not the other. Eventually they created a molecule that successfully selected only for the desired microRNA, 515. The result was that the cells produced increased HER2 levels, making them sensitive to the drugs.

"The demanding synthetic, biochemical, and cellular experiments described in this paper were three years in the making," Costales says. "It required tremendous effort, but the work is by no means complete. I am looking forward to future work guided by the lessons we learned here."

Disney credits his colleague, Scripps Research chemist Alexander Adibekian, PhD, with helping understand the mechanisms of action of their compound, TGP-515, and demonstrating its selectivity.

It's important to note that this is a first step toward making drugs to boost HER2 sensitivity where there is none, Disney says. Significant additional research lies ahead, he says.

Successful tests in cultured cells must be followed with tests in mouse models of cancer, a process that will take several years. Financial support from the community, including Frenchman's Creek Women for Cancer Research, Alan and Susan Fuirst, and the R. J. Scheller Graduate Student Fellowship, has helped made the work possible.

"These studies would not have been realized without the local support graciously provided by the community," Disney says. "I am incredibly grateful for the community taking the time to invest in the future of biomedical research completed here at Scripps Research."
-end-
In addition to Costales and Disney, the authors of the study, "A Designed Small Molecule Inhibitor of a Non-Coding RNA Sensitizes HER2 Negative Cancers to Herceptin," were Dominic Hoch, Daniel Abegg, Jessica Childs-Disney, Sai Pradeep Velagapudi and Alexander Adibekian of Scripps Research in Jupiter, Florida.

Scripps Research Institute

Related Breast Cancer Articles:

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
Blood test offers improved breast cancer detection tool to reduce use of breast biopsy
A Clinical Breast Cancer study demonstrates Videssa Breast can inform better next steps after abnormal mammogram results and potentially reduce biopsies up to 67 percent.
More Breast Cancer News and Breast Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.