Nav: Home

Evolution: Larger datasets unravel deep roots

February 07, 2019

Comparative genome content analyses provide insight into the early evolution of animals. A novel method that permits the use of larger datasets in such studies yields results that are consistent with classical views of animal phylogeny.

Reconstruction of the phylogeny of animals sheds light on unanswered questions in evolutionary biology, including the origin and development of tissues and organ systems, such as muscles and nerves. However, tracing the deep phylogenetic relationships of animals remains a challenging task. Nowadays, this endeavor is based largely on the comparative analysis of amino-acid sequences of proteins. This approach can now be applied to 'phylogenomic' datasets encompassing virtually the complete protein sequences of an animal's genome. In spite of these advances, however, we still do not have a generally accepted phylogenetic tree of animals. This is especially true at the root of all animals, whose early evolutionary history remains highly controversial. Now researchers led by Professor Gert Woerheide (affiliated with both the Department of Earth and Environmental Sciences, and the GeoBio Center at Ludwig-Maximilians-Universitaet (LMU) in Munich), Dr. Walker Pett (Iowa State University, USA), and Professor Davide Pisani (University of Bristol, UK) have introduced a new methodological approach, which avoids the difficulties of sequence-based data analysis, and corroborates the classical view of animal phylogeny.

The findings appear in the journal Molecular Biology and Evolution.

To untangle the relationships among early-evolving animal groups, evolutionary biologists compare the sequences of 'homologous' genes from a range of species. Homologous genes have similar amino-acid sequences and code for proteins that often perform the same functions in the different species of interest and are therefore assumed to have been derived from a common ancestor. As a rule, these analyses have specifically focused on 'orthologs', one of two recognized subgroups of homologous genes. Orthologs are genes which are thought to be derived directly (by vertical descent) from a single ancestral sequence. "But genes evolve at different rates, and in the case of lineages that have undergone rapid diversification - those in which the rate of accumulation of novel mutations is especially high - genes can change so fast that it becomes very difficult to confidently identify genes that are true orthologs," says Wörheide. This phenomenon diminishes the amount of data that can be used for sequence-based phylogenetic analyses, and may reduce the statistical significance of the results. To avoid these drawbacks, Wörheide and his colleagues have adopted a different strategy, in which the presence or absence of homologous gene families (i.e. gene content) rather than the comparison of orthologous gene sequences is the data of interest. This shift of viewpoint enables them to take what are called 'paralogous' homologs into account, in addition to the orthologs mentioned above. Paralogous genes are products of the duplication of a pre-existing gene, which subsequently may evolve independently of each other. "When all homologous gene families, rather than orthologous genes alone, are incorporated into a comparative phylogenetic analysis of gene content, we have a much deeper store of information to draw upon," explains Walker Pett, first author of the new study.

To test the resolution of the method, Pett and colleagues investigated the phylogeny of the earliest-branching lineages in the animal tree of life, using either the complete set of identifiable homologous gene families or the subset of orthologs. Of particular interest among these animal phyla are the sponges (Porifera) and the comb jellies (Ctenophora), as it remains unclear which of these groups represents the sister group to all other animals. "Irrespective of whether we include paralogs or not, our results are consistent with the classical view of animal phylogeny in that the sponges are the sister group to all other extant animal lineages," says Wörheide. Analysis of the ortholog gene content on its own places the comb jellies as the sister group of Placozoa, Cnidaria and Bilateria (this last group accounts for 95% of extant animal species). Including homologous gene family content data, however, identifies ctenophores as the sister group of the Cnidaria. This result agrees with a proposal drawn from morphological studies - the Coelenterata hypothesis - that dates back to the mid-19th century, a view which had gone out of favor in recent years.

"We conclude from our results that the anomalous placement of some highly divergent lineages, such as the comb jellies, reflects a fundamental limitation in the ability of conventional sequence-based methods - which rely on data for orthologs alone - to resolve the branching patterns of very ancient lineages," says Wörheide. "We therefore believe that the analysis of gene content we have introduced here should in the future be used to test hypotheses based on the comparative sequence analysis of orthologs. As in other fields, such as criminology, if an analysis of two different datasets yields the same result, then one can have more confidence in that result than in either of the individual outcomes."
-end-
Molecular Biology and Evolution 2019

Ludwig-Maximilians-Universität München

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.