Nav: Home

Scientists discover a better way to make plastics out of sulfur

February 07, 2019

Scientists at the University of Liverpool have discovered a new process to make polymers out of sulfur which could provide a way of making plastic that is less harmful to the environment.

Sulfur is an abundant chemical element and can be found as a mineral deposit across the world. It is also a waste product from the refining of crude oil and gas in the petrochemicals industry, which generates huge stockpiles of sulfur outside refineries.

Whilst being identified as an interesting possible alternative to carbon in the manufacture of polymers, sulfur cannot form a stable polymer on its own but, as revealed in a process called 'inverse vulcanization' it must be reacted with organic crosslinker molecules to make it stable. This process can require high temperatures, long reaction times, and produce harmful by-products.

However, researchers from the University of Liverpool's Stephenson Institute of Renewable Energy, working in the field of materials chemistry have made a potentially game changing discovery.

In a study published in Nature Communications, they report the discovery of a new catalytic process for inverse vulcanization that reduces the required reaction times and temperatures, whilst preventing the production of harmful by-products. It also increases the reaction yields, improves the physical properties of the polymers, and allows a wider range of crosslinkers to be used.

Synthetic polymers are ubiquitous to human life and are among the most extensively manufactured materials on earth. However, with nearly 350 million tonnes of plastic produced annually, coupled with increasing environmental concerns and decreasing petrochemical recourses, there is an urgent need to develop new polymers that are more sustainable.

Dr Tom Hasell, Royal Society University Research Fellow at the University, whose group conducted the research, said: "Making polymers (plastics) out of sulfur is a potential game changer. To be able to produce useful plastic materials from sulfur, a by-product of petroleum, could reduce society's reliance on polymers made from petroleum itself. In addition, these sulfur polymers may be easier to recycle, which opens up exciting possibilities for reducing current use of plastics.

"There is also the scope for unique new polymers with unprecedented properties. The properties of sulfur are very different to carbon, and this has already opened up a world of possible applications for sulfur polymers including thermal imaging lenses, batteries, water purification and human health.

"We made the key discovery when we decided to look to the acceleration of traditional rubber vulcanisation for inspiration. This research now marks a significant step forward in the development of inverse vulcanized polymers. It makes inverse vulcanization more widely applicable, efficient, eco-friendly and productive than the previous routes, not only broadening the fundamental chemistry itself, but also opening the door for the industrialization and broad application of these fascinating new materials in many areas of chemical and material science."
-end-
The paper `Catalytic inverse vulcanisation' is published in Nature Communications: DOI: 10.1038/s41467-019-08430-8

University of Liverpool

Related Carbon Articles:

The carbon dioxide loop
Marine biologists quantify the carbon consumption of bacterioplankton to better understand the ocean carbon cycle.
Transforming the carbon economy
A task force commissioned in 2016 by former US Secretary of Energy Ernest Moniz has proposed a framework for evaluating R&D on recycling carbon dioxide and removing large amounts of CO2 from the atmosphere.
Closing the carbon loop
Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published in the Royal Society of Chemistry journal Catalysis Science & Technology.
An overlooked source of carbon emissions
Nations that pledged to carry out the Paris climate agreement have moved forward to find practical ways to reduce greenhouse gas emissions, including efforts to ban hydrofluorocarbons and set stricter fuel-efficiency standards.
Enabling direct carbon capture
Researchers have developed a solid material that can capture carbon dioxide from the atmosphere, even at very low concentrations.
Development of a novel carbon nanomaterial 'pot'
A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced.
Unraveling truly one-dimensional carbon solids
Elemental carbon appears in many different forms, including diamond and graphite.
Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.
Consumers care about carbon footprint
How much do consumers care about the carbon footprint of the products they buy?
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.

Related Carbon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...