Scientists discover a better way to make plastics out of sulfur

February 07, 2019

Scientists at the University of Liverpool have discovered a new process to make polymers out of sulfur which could provide a way of making plastic that is less harmful to the environment.

Sulfur is an abundant chemical element and can be found as a mineral deposit across the world. It is also a waste product from the refining of crude oil and gas in the petrochemicals industry, which generates huge stockpiles of sulfur outside refineries.

Whilst being identified as an interesting possible alternative to carbon in the manufacture of polymers, sulfur cannot form a stable polymer on its own but, as revealed in a process called 'inverse vulcanization' it must be reacted with organic crosslinker molecules to make it stable. This process can require high temperatures, long reaction times, and produce harmful by-products.

However, researchers from the University of Liverpool's Stephenson Institute of Renewable Energy, working in the field of materials chemistry have made a potentially game changing discovery.

In a study published in Nature Communications, they report the discovery of a new catalytic process for inverse vulcanization that reduces the required reaction times and temperatures, whilst preventing the production of harmful by-products. It also increases the reaction yields, improves the physical properties of the polymers, and allows a wider range of crosslinkers to be used.

Synthetic polymers are ubiquitous to human life and are among the most extensively manufactured materials on earth. However, with nearly 350 million tonnes of plastic produced annually, coupled with increasing environmental concerns and decreasing petrochemical recourses, there is an urgent need to develop new polymers that are more sustainable.

Dr Tom Hasell, Royal Society University Research Fellow at the University, whose group conducted the research, said: "Making polymers (plastics) out of sulfur is a potential game changer. To be able to produce useful plastic materials from sulfur, a by-product of petroleum, could reduce society's reliance on polymers made from petroleum itself. In addition, these sulfur polymers may be easier to recycle, which opens up exciting possibilities for reducing current use of plastics.

"There is also the scope for unique new polymers with unprecedented properties. The properties of sulfur are very different to carbon, and this has already opened up a world of possible applications for sulfur polymers including thermal imaging lenses, batteries, water purification and human health.

"We made the key discovery when we decided to look to the acceleration of traditional rubber vulcanisation for inspiration. This research now marks a significant step forward in the development of inverse vulcanized polymers. It makes inverse vulcanization more widely applicable, efficient, eco-friendly and productive than the previous routes, not only broadening the fundamental chemistry itself, but also opening the door for the industrialization and broad application of these fascinating new materials in many areas of chemical and material science."
-end-
The paper `Catalytic inverse vulcanisation' is published in Nature Communications: DOI: 10.1038/s41467-019-08430-8

University of Liverpool

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.