Nav: Home

Scientists generate functional, transplantable B cells from mice

February 07, 2019

Functional B-1 cells derived from mouse embryonic stem cells are capable of long-term engraftment and secrete natural antibodies after transplantation in mice, researchers report February 7th in the journal Stem Cell Reports. Scientists are interested in B-1 cells generated from pluripotent stem cells because they could be tested as a therapeutic for a broad range of immunological disorders.

"It is still challenging to produce transplantable immune cells from mouse embryonic stem cells, so obtaining transplantable functional B-1 cells from mouse embryonic stem cells is a significant advance in the field," says senior study author Momoko Yoshimoto of the Center for Stem Cell & Regenerative Medicine at the McGovern Medical School at UTHealth in Houston. "The take-home message is that a portion of immune cells may be replaced by cell therapies utilizing pluripotent stem cells in the future."

Hematopoietic stem cells in the adult bone marrow -- the soft, sponge-like tissue in the center of most bones -- provide various blood cells throughout life. Hematopoietic stem cell transplants are now routinely used to treat patients with cancers and other disorders of the blood and immune systems. But with current in vitro methods, it is challenging to produce hematopoietic stem cells that recapitulate the properties of cells in living organisms without gene manipulation.

In particular, bone marrow transplantation may fail to reconstitute some immune cells called B-1 cells, which produce immunoglobulin M (IgM) antibodies -- the first type of antibody the immune system makes to fight a new infection. In addition to patients who receive stem cell transplants, IgM deficiency also occurs in individuals with some cancers, autoimmune diseases, allergic diseases, and gastrointestinal diseases, increasing the risk for life-threatening infections.

In the new study, Yoshimoto and her colleagues demonstrated that functional, transplantable B-1 cells can be generated from mouse embryonic stem cells without gene modifications. The researchers overcame previous barriers preventing this feat by using high-quality cell lines to support B cell development. After being transplanted into recipient mice, stem cell-derived B progenitors matured into B-1 cells that were maintained for more than 6 months and secreted natural IgM antibodies.

"Producing functional B-1 progenitors in vitro from mouse embryonic stem cells is an important step to develop a cell therapy to provide natural IgM and innate B-1 cells that may not be provided by bone marrow transplantation," Yoshimoto says.

In future studies, the researchers will attempt to generate B cells from human induced pluripotent stem cells, which may be used for cell therapy to treat patients with immunological disorders. "This is just a first step in a long process to translate our findings to humans," Yoshimoto says.
-end-
This work is supported by the NIH.

Stem Cell Reports, Lin et al.: "Long-Term Engraftment of ESC-Derived B-1 Progenitor Cells Supports HSC-Independent Lymphopoiesis" http://www.cell.com/stem-cell-reports/fulltext/S2213-6711(19)30007-4

Stem Cell Reports, published by Cell Press for the International Society for Stem Cell Research (@ISSCR), is a monthly open-access forum communicating basic discoveries in stem cell research, in addition to translational and clinical studies. The journal focuses on shorter, single-point manuscripts that report original research with conceptual or practical advances that are of broad interest to stem cell biologists and clinicians. Visit http://www.cell.com/stem-cell-reports. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Stem Cell Articles:

Stem cell identity unmasked by single cell sequencing technology
Scientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.
It's all about the (stem cell) neighborhood
Researchers at Duke-NUS Medical School have now identified how the stem cell neighbourhood, known as a niche, keeps stem cells in the gut alive.
Spaceflight activates cell changes with implications for stem cell-based heart repair
A new study of the effects of spaceflight on the development of heart cells identified changes in calcium signaling that could be used to develop stem cell-based therapies for cardiac repair.
Not just a stem cell marker
The protein CD34 is predominantly regarded as a marker of blood-forming stem cells but it helps with migration to the bone marrow too.
Interferon-beta producing stem cell-derived immune cell therapy on liver cancer
Induced pluripotent stem (iPS) cell-derived myeloid cells (iPS-ML) that produce the anti-tumor protein interferon-beta (IFN-beta) have been produced and analyzed by researchers from Kumamoto University, Japan.
Scientists aim to create the world's largest sickle cell disease stem cell library
Scientists at the Center for Regenerative Medicine at Boston Medical Center and Boston University School of Medicine are creating an induced pluripotent stem cell (iPSC)-based research library that opens the door to invaluable sickle cell disease research and novel therapy development.
Designer switches of cell fate could streamline stem cell biology
Researchers at the University of Wisconsin-Madison have developed a novel strategy to reprogram cells from one type to another in a more efficient and less biased manner than previous methods.
Allen Institute for cell science releases gene edited human stem cell lines
The Allen Institute for Cell Science has released the Allen Cell Collection: the first publicly available collection of gene edited, fluorescently tagged human induced pluripotent stem cells that target key cellular structures with unprecedented clarity.
Feng Zhang receives 2016 New York Stem Cell Foundation -- Robertson Stem Cell Prize
The New York Stem Cell Foundation (NYSCF) announced today that Feng Zhang, Ph.D., is the 2016 recipient of the NYSCF -- Robertson Stem Cell Prize for his pioneering advances to edit human and plant genomes using CRISPR-Cas9.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
More Stem Cell News and Stem Cell Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.