Nav: Home

The involvement of the gut in Parkinson's disease: hype or hope?

February 07, 2019

Amsterdam, NL, February 7, 2019 - There is growing evidence that at least in some patients with Parkinson's disease (PD), the disease may begin in the gut. Writing in a special supplement to the Journal of Parkinson's Disease, experts explore the last two decades of research about the gut-brain axis in PD and look ahead at the possible development and impact of these research areas in the next two decades.

PD is a slowly progressive disorder that affects movement, muscle control, and balance. In the last 20 years it has become clear that PD is associated with a number of gastrointestinal symptoms originating from functional and structural changes in the gut and its associated neural structures. Many patients with PD suffer from gut-related symptoms such as constipation, which have an impact on quality of life. Accumulating evidence suggests that in at least a subgroup of patients, these disturbances happen years before the development of motor symptoms and diagnosis of PD and may therefore provide important insights into the origin and development of the disease.

"Better understanding the role of the gut in PD will help us to understand the origin of the disease and to improve treatments," explained Filip Scheperjans, MD, PhD, from the Department of Neurology, Helsinki University Hospital, Helsinki, Finland, and colleagues. "There is accumulating evidence that at least in some PD patients, the origin of the disease may lie in the gut with possible involvement of abnormal protein aggregates, local inflammation, and the gut microbiome. Therefore, further studies into the role of the gut in PD are important and may reveal new possibilities for diagnosis and treatment."

The authors identified four key issues:

  1. Alpha-synuclein deposits are observed in the enteric nervous system (ENS) of PD patients However, it remains to be determined if the alpha-synuclein aggregates in the ENS are biochemically similar to the ones found in the brain as this might be critical in understanding the role of the gut in PD pathogenesis.

  2. Triggering of initial alpha-synuclein aggregation in enteric nerve terminals through extrinsic factors could be facilitated by intestinal hyperpermeability. It remains to be definitely demonstrated that intestinal permeability is increased in PD.

  3. Results of immunohistochemistry-based studies on alpha-synuclein deposits in the ENS of PD patients have provided conflicting results. There is therefore a critical need to develop alternative techniques to detect alpha-synuclein aggregates in the gut.

  4. Alterations of gut microbiota composition in PD have been shown in multiple cross-sectional studies from diverse populations. It will be crucial to determine the mechanisms that connect gut microbiota and PD in large multicenter studies of PD patients before and after diagnosis as well as in animal models employing multiomics approaches.


The authors predict that major advances will be made over the next 20 years in understanding the role of gastrointestinal alpha-synuclein pathology in the etiology of PD and explaining the degree of similarity between pathophysiological processes in PD and those of true prion diseases such as Creutzfeldt-Jakob disease. Accessible and affordable methods such as radio-opaque markers to assess gastrointestinal transit times will find more widespread use in future studies. They believe there is good reason to envision that gut microbiota may have important implications in the future diagnostic and therapeutic landscape of PD and that therapeutic applications based on the gut microbiome are possible through a range of approaches, including dietary interventions, probiotics, prebiotics, and fecal microbiota transplantation. And finally, that a more detailed understanding of microbiome-host-interactions in PD could identify new pathways that could be targeted using more traditional pharmacological approaches.

"Our understanding and appreciation of the importance of the gut-brain connection in PD has grown rapidly in recent years. We are confident that the coming two decades of microbiome-gut-brain-axis research will see an even accelerated development in this area that will reshape our understanding of the pathogenesis of PD," concluded Dr. Scheperjans.

"The gut has emerged as one of the new frontiers in PD research," commented Patrik Brundin, MD, PhD, Van Andel Research Institute, Grand Rapids, MI, USA, and J. William Langston, MD, Stanford Udall Center, Department of Pathology, Stanford University, Palo Alto, CA, USA, Editors-in-Chief of the Journal of Parkinson's Disease. "We predict there will be several advances regarding the gut in the coming 20 years. Changes in the gut might be utilized to diagnose PD earlier; new therapies targeting these changes might slow disease progression, reduce constipation, and improve gut function in patients who have already been diagnosed."
-end-


IOS Press

Related Gut Microbiota Articles:

What do we know about the gut microbiota in Parkinson's disease?
Since the discovery that the gut microbiome may play a role in the development of Parkinson's disease (PD), this fresh scientific approach has produced varying results.
Gut instincts: Researchers discover first clues on how gut health influences brain health
New cellular and molecular processes underlying communication between gut microbes and brain cells have been described for the first time by scientists at Weill Cornell Medicine and Cornell's Ithaca campus.
Disrupting daily routine of gut microbiota impacts host metabolic function, mouse study shows
Disrupting the daily routine of gut microbes in mice impacts their metabolism, increasing the risk for metabolic dysfunction, according to a new study.
Study shows how serotonin and a popular anti-depressant affect the gut's microbiota
A new UCLA-led biology study in mice strongly suggests that serotonin and drugs that target serotonin, such as anti-depressants, can have a major effect on the gut's microbiota -- the 100 trillion or so bacteria and other microbes that live in the human body's intestines.
Gut microbiota linked to organ damage in patients with sepsis
Sepsis is a serious condition that can result in organ failure and even death.
Microbiota in home indoor air may protect children from asthma
Large amounts of a certain type of bacteria, most likely from outdoors, may reduce the child's risk of developing asthma.
Farm-like indoor microbiota may protect children from asthma also in urban homes
A child's risk of developing asthma is the lower the more the microbiota of the child's home resembles that of a farm house.
Common food additive found to affect gut microbiota
Experts call for better regulation of a common additive in foods and medicine, as research reveals it can impact the gut microbiota and contribute to inflammation in the colon, which could trigger diseases such as inflammatory bowel diseases and colorectal cancer.
Human activity can influence the gut microbiota of Darwin's finches in the Galapagos
In the Galapagos Islands, Darwin's finches drawn to junk food are experiencing changes in their gut microbiota and their body mass as compared to finches that don't encounter human food, according to a new University of Connecticut study.
Mode of delivery alters infants' gut microbiota and this may impact respiratory health in first year of life
New research being presented at this year's European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) in Amsterdam, the Netherlands (April 13-16), suggests that mode of delivery influences the development of the microbial composition of the gut (i.e. the gut microbiota) in infants, independently of a mother's use of antibiotics.
More Gut Microbiota News and Gut Microbiota Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.