Nav: Home

Two independent mechanisms are involved in tuberous sclerosis

February 07, 2019

The current idea about how tuberous sclerosis occurs places mTORC1, a protein complex that regulates cell metabolism, as the major driving force behind the disease. But according to a new study published in the Proceedings of the National Academy of Sciences U.S.A. by researchers at Baylor College of Medicine and Texas Children's Hospital, the development of this rare condition also involves a second mechanism that is independent of mTORC1. The findings can potentially lead to new treatments that might benefit patients who partially respond to current therapies focused on mTORC1.

"Tuberous sclerosis is a rare genetic disease that causes benign tumors to grow in the brain, kidneys, skin and other organs. Patients present with a combination of symptoms that can include seizures, developmental delay, skin abnormalities and kidney disease," said first and co-corresponding author Dr. Rituraj Pal, postdoctoral associate of molecular and human genetics at Baylor.

Tuberous sclerosis is caused by mutations in the genes TSC1 and TSC2. The current thought is that the dysfunctional proteins produced by these mutated genes fail to regulate mTORC1, which then becomes hyperactive and leads to the development of the disease. How the disease actually develops is still not clear.

"Previous studies have associated tuberous sclerosis with excessive accumulation of glycogen, a main source of energy, inside cells, although this has not been clearly shown," said corresponding author Dr. Marco Sardiello, assistant professor of molecular and human genetics at Baylor and a member of the Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital. "We know from other conditions that glycogen accumulation damages cells."

Cells are like homes. Both are constantly producing waste that must be disposed of to keep a healthy, functional environment. Even materials that are usually not toxic, such as glycogen, will become so if they accumulate inside the cell. To gain insights into how the disease happens, the researchers first investigated whether glycogen accumulated inside cells with the disease.

Discovering a second player in tuberous sclerosis

"We clearly show that glycogen accumulates inside both human and mouse cells with the condition," Pal said. "Then we investigated the mechanism."

The researchers looked at mTORC1, the only player that was known to be contributing to tuberous sclerosis, and found that in some cases in which the TSC2 gene is completely deleted, mTORC1 is hyperactive and partially responsible for the accumulation of glycogen.

But when the researchers tested samples from patients carrying two particular TSC2 mutations that do not completely eliminate the gene but just change the protein, they observed that mTORC1 was working normally, yet glycogen accumulated inside the cells. This suggested that there was another glycogen-clearing mechanism at play and that it was independent of mTORC1.

"One clue about what the second mechanism might involve was the observation that the affected cells had fewer lysosomes than normal cells," Pal said. "Lysosomes are structures in charge of clearing cellular waste. When lysosomes fail and cellular waste accumulates, disease follows."

Further investigations showed that the second mTORC1-independent mechanism involved defects in the formation of lysosomes and in the process that digests cellular materials, including glycogen. And this led to the accumulation of glycogen inside the cells.

"Our findings put forward a new perspective on this disease that can have implications for patient treatment. We show that mutations of TSC2 are not all equal, implying that the same is true for patients," Pal said.

Current treatments are focused on modifying only mTORC1 activity. This work suggests that further studies are needed to systematically analyze the TSC mutations carried by each patient. Some patients may be carrying TSC mutations that affect mTORC1. But in other patients TSC mutations may be affecting the second mechanism without disrupting mTORC1.

"This could lead to the development of novel approaches to treat the disease that might improve the response of patients who partially respond to the treatments focused on targeting mTORC1," Sardiello said.
Dr. Yan Xiong at Baylor College of Medicine also contributed to this work.

Financial support was provided by National Institutes of Health grant NS079618.

Baylor College of Medicine

Related Disease Articles:

Inflammatory bowel disease appears to impact risk of Parkinson's disease
Amsterdam, NL, November 14, 2019 - Relatively new research findings indicating that the earliest stages of Parkinson's disease (PD) may occur in the gut have been gaining traction in recent years.
Contact sports associated with Lewy body disease, Parkinson's disease symptoms, dementia
There is mounting evidence that repetitive head impacts from contact sports and other exposures are associated with the neurodegenerative disease chronic traumatic encephalopathy (CTE) and dementia.
In kidney disease patients, illicit drug use linked with disease progression and death
Among individuals with chronic kidney disease, hard illicit drug use was associated with higher risks of kidney disease progression and early death.
Parkinson's disease among patients with inflammatory bowel disease
Patients with inflammatory bowel disease appeared more likely than patients without the disorder to develop Parkinson's disease, while anti-tumor necrosis factor therapy for inflammatory bowel disease was associated with reduced incidence of Parkinson's in a new study that analyzed administrative claims data for more than 170 million patients.
Despite reductions in infectious disease mortality in US, diarrheal disease deaths on the rise
Deaths from infectious diseases have declined overall in the United States over the past three decades.
Defects on regulators of disease-causing proteins can cause neurological disease
Mutations in human PUMILIO1, a gene that regulates Ataxin1 production, cause conditions similar to spinocerebellar ataxia type 1 (SCA1).
Diabetes drug shows potential as disease-modifying therapy for Parkinson's disease
A drug commonly used to treat diabetes may have disease-modifying potential to treat Parkinson's disease, a new UCL-led study in The Lancet suggests, paving the way for further research to define its efficacy and safety.
Findings support role of vascular disease in development of Alzheimer's disease
Among adults who entered a study more than 25 years ago, an increasing number of midlife vascular risk factors, such as obesity, high blood pressure, diabetes, high cholesterol and smoking, were associated with elevated levels of brain amyloid (protein fragments linked to Alzheimer's disease) later in life, according to a study published by JAMA.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Study links changes in oral microbiome with metabolic disease/risk for dental disease
A team of scientists from The Forsyth Institute and the Dasman Diabetes Institute in Kuwait have found that metabolic diseases, which are characterized by high blood pressure, high blood sugar, and obesity -- leads to changes in oral bacteria and puts people with the disease at a greater risk for poor oral health.
More Disease News and Disease Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at