Keeping things moving

February 07, 2019

Engine gears, plane thrusters, refrigerator compressors, wind turbines -- the list of important industrial machinery, agricultural equipment, transportation vessels, and home applications that depend on lubricants might be endless. These slick substances quite literally keep the world turning, touching nearly every facet of modern life and comprising a global industry worth more than $60 billion dollars annually.

And yet, as essential as they are to our way of life, lubricants leave a heavy environmental footprint. Common lubricants, oils, greases and emollients typically consist of mineral, or petroleum, base oils -- often up to 90 percent by weight. These mineral base oils are highly volatile and tend to thicken quickly, which means that lubricants need to be replaced often, generating waste.

Synthetic base oils are key to efficient lubricants -- owing to their better lubrication properties, stability, and suitability for extreme temperatures compared to their regular mineral-base oils counterparts -- but producing them with tunable (i.e. customizable) structures and specifications can be both challenging and expensive. This lack of tunability creates a need for mixing the base-oil with several expensive additives, increasing the environmental footprint of lubricants.

Now, researchers at the University of Delaware-led Catalysis Center for Energy Innovation (CCEI) and investigators from its partner institutions are working to solve these problems. Their findings report a strategy to create renewable lubricant base oils efficiently from non-food biomass -- things like wood, switchgrass and other sustainable, organic waste -- and fatty acids, which are present in used vegetable oils and animal fat.

The group's research has been published in the latest issue of Science Advances, and an international patent application has been filed to secure intellectual property rights for their innovative methods.

"This is one of the first attempts to make renewable lubricants from abundant raw materials, and in a very precise chemical way so that the architecture of these large molecules is dialed in, something unachievable using crude oil," said Dion Vlachos, founder and director of CCEI and the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering. "The product is clearly a high-performance material with tunable properties, unlike anything in the market."

Basu Saha, associate director at CCEI, points to catalysis as the key to synthesizing these new base-oils.

"Catalysts are used to accelerate chemical reactions and create new materials," Saha said. "For lubricants, catalysis allows researchers to not only synthesize new and existing structurally similar base-oils from bio-based feedstock, but lends extensive control over the molecules' weight, size distribution, branching and specifications."

Produced base oils are suitable for a wide range of existing applications without requiring high amounts of additives in the lubricant formulation, said Sibao Liu, a postdoctoral researcher at UD and one of the paper's co-authors.

"We've provided a new, efficient and versatile catalytic reaction pathway for synthesis of renewable lubricants with tunable properties," Liu adds. "We hope this could eventually displace the manufacturing process for some lubricants used today and minimize environmental carbon footprint, though there is still a long way to go."
-end-
About CCEI

The Catalysis Center for Energy Innovation is a multi-institutional research center led by the University of Delaware and comprised of 10 academic institutions and two national research laboratories. Supported by the U.S. Department of Energy, Office of Basic Energy Sciences, through its Energy Frontier Research Centers (EFRC) program since 2009, CCEI and its researchers have been developing innovative catalytic technologies to efficiently convert biomass, such as trees and grasses, into chemicals and fuels.

University of Delaware

Related Crude Oil Articles from Brightsurf:

The first battle for oil in Norway
The world's richest man and the world's largest oil company dominated the petroleum market in Norway long before landmark finds on the Norwegian continental shelf and the Norwegian oil fund.

Oil droplet predators chase oil droplet prey
Oil droplets can be made to act like predators, chasing down other droplets that flee like prey mimicking behavior seen among living organisms.

Oil-soluble transition metal-based catalysts tested for in-situ oil upgrading
The results of the study showed that the good catalytic properties of the new transition metal catalysts, as well as their low cost and easy accessibility, make them a potential solution in the aquathermolysis reaction and heavy oil recovery.

Sea turtles' impressive navigation feats rely on surprisingly crude 'map'
Since the time of Charles Darwin, scientists have marvelled at sea turtles' impressive ability to make their way--often over thousands of kilometers--through the open ocean and back to the very places where they themselves hatched years before.

A sustainable alternative to crude oil
A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production -- a successful example for a more sustainable economy with bio-based materials.

Oil futures volatility and the economy
The drone strike on Saudi Arabia's oil infrastructure has highlighted the fragile and interconnected relationship between crude oil supply and the global economy, with new research bringing these economic ties into greater focus.

Scientists dissolve crude oil in water to study its composition
Researchers from MIPT, Skoltech, the Joint Institute for High Temperatures of the Russian Academy of Sciences, and Lomonosov Moscow State University have offered a new approach to oil composition analysis.

Marine oil snow
Marine snow is the phenomena of flakes of falling organic material and biological debris cascading down a water column like snowflakes.

When sand behaves like oil
Sand, coffee grounds and rice behave very differently than water or oil, but under certain conditions they will suddenly exhibit astonishing similarities.

Cleaning up oil using magnets
In the future, it could be possible to remove oil spills on the surface of the ocean by using magnets.

Read More: Crude Oil News and Crude Oil Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.