Nav: Home

Keeping things moving

February 07, 2019

Engine gears, plane thrusters, refrigerator compressors, wind turbines -- the list of important industrial machinery, agricultural equipment, transportation vessels, and home applications that depend on lubricants might be endless. These slick substances quite literally keep the world turning, touching nearly every facet of modern life and comprising a global industry worth more than $60 billion dollars annually.

And yet, as essential as they are to our way of life, lubricants leave a heavy environmental footprint. Common lubricants, oils, greases and emollients typically consist of mineral, or petroleum, base oils -- often up to 90 percent by weight. These mineral base oils are highly volatile and tend to thicken quickly, which means that lubricants need to be replaced often, generating waste.

Synthetic base oils are key to efficient lubricants -- owing to their better lubrication properties, stability, and suitability for extreme temperatures compared to their regular mineral-base oils counterparts -- but producing them with tunable (i.e. customizable) structures and specifications can be both challenging and expensive. This lack of tunability creates a need for mixing the base-oil with several expensive additives, increasing the environmental footprint of lubricants.

Now, researchers at the University of Delaware-led Catalysis Center for Energy Innovation (CCEI) and investigators from its partner institutions are working to solve these problems. Their findings report a strategy to create renewable lubricant base oils efficiently from non-food biomass -- things like wood, switchgrass and other sustainable, organic waste -- and fatty acids, which are present in used vegetable oils and animal fat.

The group's research has been published in the latest issue of Science Advances, and an international patent application has been filed to secure intellectual property rights for their innovative methods.

"This is one of the first attempts to make renewable lubricants from abundant raw materials, and in a very precise chemical way so that the architecture of these large molecules is dialed in, something unachievable using crude oil," said Dion Vlachos, founder and director of CCEI and the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering. "The product is clearly a high-performance material with tunable properties, unlike anything in the market."

Basu Saha, associate director at CCEI, points to catalysis as the key to synthesizing these new base-oils.

"Catalysts are used to accelerate chemical reactions and create new materials," Saha said. "For lubricants, catalysis allows researchers to not only synthesize new and existing structurally similar base-oils from bio-based feedstock, but lends extensive control over the molecules' weight, size distribution, branching and specifications."

Produced base oils are suitable for a wide range of existing applications without requiring high amounts of additives in the lubricant formulation, said Sibao Liu, a postdoctoral researcher at UD and one of the paper's co-authors.

"We've provided a new, efficient and versatile catalytic reaction pathway for synthesis of renewable lubricants with tunable properties," Liu adds. "We hope this could eventually displace the manufacturing process for some lubricants used today and minimize environmental carbon footprint, though there is still a long way to go."
-end-
About CCEI

The Catalysis Center for Energy Innovation is a multi-institutional research center led by the University of Delaware and comprised of 10 academic institutions and two national research laboratories. Supported by the U.S. Department of Energy, Office of Basic Energy Sciences, through its Energy Frontier Research Centers (EFRC) program since 2009, CCEI and its researchers have been developing innovative catalytic technologies to efficiently convert biomass, such as trees and grasses, into chemicals and fuels.

University of Delaware

Related Crude Oil Articles:

The chemistry of olive oil (video)
Whether you have it with bread or use it to cook, olive oil is awesome.
Research for an oil (palm) change
In recent research, scientists have developed a technique that shows great promise for helping oil palm growers optimize production and reduce environmental impacts.
New technology could end costly crude oil pipeline blockages
Getting crude oil from the wellhead to its downstream destination can be literally stopped in its tracks when components of the oil known as asphaltenes clump together, reducing the flow or causing a complete blockage.
New application of THz technique on water evaluation in crude oil
The evaluation of water content in crude oil is of significance to petroleum exploration and transportation.
New research shows crude oil chemicals move and change more quickly than EPA standards
The EPA lists about 65 chemicals as 'toxic pollutants' under the Clean Water Act, 16 of which are polycyclic aromatic hydrocarbons, or PAHs.
Substance in crude oil harms fish hearts, could affect humans as well
Exposure to oil can cause severe cardiovascular effects in fish.
Nanofur for oil spill cleanup
Some water ferns can absorb large volumes of oil within a short time, because their leaves are strongly water-repellent and, at the same time, highly oil-absorbing.
Crude oil causes heart and skull deformities in haddock
Even brief exposures of the eggs of Atlantic haddock to low concentrations of dispersed crude oil can cause severe and usually deadly deformities in developing fish, an international research team has found.
Can palm oil be sustainable?
A new study shows to where and to what extent palm oil plantations could be expanded, while avoiding further deforestation in pristine and carbon-rich tropical forests.
Virgin olive oil and hypertension
Oleic acid plus a constellation of minor constituents as a natural antihypertensive.

Related Crude Oil Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...