Nav: Home

Simple drug combination creates new neurons from neighboring cells

February 07, 2019

A simple drug cocktail that converts cells neighboring damaged neurons into functional new neurons could potentially be used to treat stroke, Alzheimer's disease, and brain injuries. A team of researchers at Penn State identified a set of four, or even three, molecules that could convert glial cells--which normally provide support and insulation for neurons--into new neurons. A paper describing the approach appears online in the journal Stem Cell Reports on February 7, 2019.

"The biggest problem for brain repair is that neurons don't regenerate after brain damage, because they don't divide," said Gong Chen, professor of biology and Verne M. Willaman Chair in Life Sciences at Penn State and leader of the research team. "In contrast, glial cells, which gather around damaged brain tissue, can proliferate after brain injury. I believe turning glial cells that are the neighbors of dead neurons into new neurons is the best way to restore lost neuronal functions."

Chen's team previously published research describing a sequence of nine small molecules that could directly convert human glial cells into neurons, but the large number of molecules and the specific sequence required for reprogramming the glial cells complicated the transition to a clinical treatment. In the current study, the team tested various numbers and combinations of molecules to identify a streamlined approach to the reprogramming of astrocytes, a type of glial cells, into neurons.

"We identified the most efficient chemical formula among the hundreds of drug combinations that we tested," said Jiu-Chao Yin, a graduate student in biology at Pen State who identified the ideal combination of small molecules. "By using four molecules that modulate four critical signaling pathways in human astrocytes, we can efficiently turn human astrocytes--as many as 70 percent--into functional neurons."

The resulting chemically converted neurons can survive more than seven months in a culture dish in the lab. They form robust neural networks and send chemical and electrical signals to each other, as normal neurons do inside the brain.

Using three of the small molecules instead of four also results in the conversion of astrocytes into neurons, but the conversion rate drops by about 20 percent. The team also tried using only one of the molecules, but this approach did not induce conversion.

Chen and his team had previously developed a gene therapy technology to convert astrocytes into functional neurons, but due to the excessive cost of gene therapy--which can cost a patient half a million dollars or more--the team has been pursuing more economical approaches to convert glial cells into neurons. The delivery system for gene therapies is also more complex, requiring the injection of viral particles into the human body, whereas the small molecules in the new method can be chemically synthesized and packaged into a pill.

"The most significant advantage of the new approach is that a pill containing small molecules could be distributed widely in the world, even reaching rural areas without advanced hospital systems," said Chen. "My ultimate dream is to develop a simple drug delivery system, like a pill, that can help stroke and Alzheimer's patients around the world to regenerate new neurons and restore their lost learning and memory capabilities."

The researchers acknowledge that many technical issues still need to be resolved before a drug using small molecules could be created, including the specifics of drug packaging and delivery. They also plan to investigate potential side effects of this approach in future studies in order to develop the safest drug pills. Nonetheless, the research team is confident that this combination of molecules has promising implications for future drug therapies to treat individuals with neurological disorders.

"Our years of effort in discovering this simplified drug formula take us one step closer to reaching our dream," said Chen.
-end-
In addition to Chen and Yin, other co-authors contributed to this work include Lei Zhang, Ning-Xin Ma, Yue Wang, Grace Lee, Xiao-Yi Hou, Zhuo-Fan Lei, Feng-Yu Zhang, Feng-Ping Dong and Gang-Yi Wu from Penn State. This work was supported by the National Institutes of Health (AG045656), the Alzheimer's Association (ZEN-15-321972), and the Charles H. "Skip" Smith Endowment Fund at Penn State.

[ Jiu-Chao Yin and Gail McCormick ]

Penn State

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab