Nav: Home

Big data approach shown to be effective for evaluating autism treatments

February 07, 2019

Researchers at Rensselaer Polytechnic Institute who developed a blood test to help diagnose autism spectrum disorder have now successfully applied their distinctive big data-based approach to evaluating possible treatments.

The findings, recently published in Frontiers in Cellular Neuroscience, have the potential to accelerate the development of successful medical interventions. One of the challenges in assessing the effectiveness of a treatment for autism is how to measure improvement. Currently, diagnosis and evaluating the success of an intervention rely heavily on observations by professionals and caretakers.

"Having some kind of a measure that measures something that's happening inside the body is really important," said Juergen Hahn, systems biologist, professor, and head of the Rensselaer Department of Biomedical Engineering.

Hahn and his team use machine-learning algorithms to analyze complex data sets. That is how he previously discovered patterns with certain metabolites in the blood of children with autism that can be used to successfully predict diagnosis. You can watch Hahn discuss that here.

In this most recent analysis, the team used a similar set of measurements from three different clinical trials that examined potential metabolic interventions. The researchers were able to compare data from before and after treatment, and look for correlations between those results and any observed changes of adaptive behavior.

"What we did here is showed that if you actively try to change concentrations of these metabolites that are being measured, then you will also see changes in the behavior," Hahn said.

Hahn said that this approach was unique in that it analyzed multiple medical markers at the same time, unveiling correlations not seen in the data if each measurement is investigated individually.

"It can speed up the development process because you now have an additional tool that tells you how well a treatment has worked," he said.

Hahn expects this type of approach to become an important component of clinical trials for autism in the future. "Having medical tests that measure quantities directly related to the physiology is important and we hope that they get incorporated into future trials," he said.

Hahn, a member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies, worked on this study with Rensselaer graduate student Troy Vargason, undergraduate student Emily Roth, and Uwe Kruger, who is a professor of practice in the biomedical engineering department.

In addition to developing and successfully testing the first physiological test for autism and this recent work, Hahn has also worked with colleagues to apply his method to determining a pregnant mother's relative risk for having a child with autism spectrum disorder.
-end-
About Rensselaer Polytechnic Institute

Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. For nearly 200 years, Rensselaer has defined the scientific and technological advances of our world. With more than 7,000 students and nearly 100,000 living alumni, Rensselaer is addressing the global challenges facing the 21st century with a spirit of collaboration and innovation. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. To learn more, go to http://www.rpi.edu.

Contact: Reeve Hamilton
Director of Media Relations
518-833-4277 (cell)
518-276-8432
hamilr5@rpi.edu

For general media inquiries: newsmedia@rpi.edu

Visit the Rensselaer research and discovery blog: http://everydaymatters.rpi.edu/

Follow us on Twitter: @RPINews

Rensselaer Polytechnic Institute

Related Autism Articles:

Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
A blood test for autism
An algorithm based on levels of metabolites found in a blood sample can accurately predict whether a child is on the autism spectrum of disorder (ASD), based upon a recent study.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
Autism Speaks MSSNG study expands understanding of autism's complex genetics
A new study from Autism Speaks' MSSNG program expands understanding of autism's complex causes and may hold clues for the future development of targeted treatments.
Paths to Autism: One or Many?
A new report in Biological Psychiatry reports that brain alterations in infants at risk for autism may be widespread and affect multiple systems, in contrast to the widely held assumption of impairment specifically in social brain networks.
Raising a child with autism
Humans are resilient, even facing the toughest of life's challenges.
Explaining autism
Recognizing a need to better understand the biology that produces Autism Spectrum Disorder (ASD) symptoms, scientists at Duke-NUS Medical School (Duke-NUS) and the National Neuroscience Institute (NNI), Singapore, have teamed up and identified a novel mechanism that potentially links abnormal brain development to the cause of ASDs.
Autism breakthrough
Using a visual test that is known to prompt different reactions in autistic and normal brains, Harvard researchers have shown that those differences were associated with a breakdown in the signaling pathway used by GABA, one of the brain's chief inhibitory neurotransmitters.
New options for treating autism
The release of oxytocin leads to an increase in the production of anandamide, which causes mice to display a preference for interacting socially.
The Autism Science Foundation launches the Autism Sisters Project
The Autism Science Foundation, a not-for-profit organization dedicated to supporting and funding autism research, today announced the launch of the Autism Sisters Project, a new initiative that will give unaffected sisters of individuals with autism the opportunity to take an active role in accelerating research into the 'Female Protective Effect.'

Related Autism Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".