Nav: Home

First transport measurements reveal intriguing properties of germanene

February 07, 2019

Germanene is a 2D material that derives from germanium and is related to graphene. As it is not stable outside the vacuum chambers in which is it produced, no real measurements of its electronic properties have been made. Scientists led by Prof. Justin Ye of the University of Groningen have now managed to produce devices with stable germanene. The material is an insulator, and it becomes a semiconductor after moderate heating and a very good metallic conductor after stronger heating. The results were published in the journal Nano Letters.

Materials of just one atomic layer are of interest in the construction of new types of microelectronics. The best known of these, graphene, is an excellent conductor. Materials like silicon and germanium could be interesting as well, as they are fully compatible with well-established protocols for device fabrication, and could be seamlessly integrated into the present semiconductor technology.

Unstable

'But the 2D version of germanium, germanene, is very unstable', explains University of Groningen Associate Professor of Device Physics Justin Ye. Germanene is made from germanium by adding calcium. The calcium ions create 2D layers from a 3D crystal and are then replaced by hydrogen. These 2D layers of germanium and hydrogen are called germanane. But once the hydrogen is removed to form germanene, the material becomes unstable.

Ye and his colleagues solved this in a remarkably simple way. They made devices with the stable germanane, and then heated the material to remove the hydrogen. This resulted in stable devices with germanene, which allowed the scientists to study its electronic properties.

Hydrogen

'The initial material was an insulator', says Ye. A Ph.D. student from his group heated these devices, which is a tried and tested method to increase conductivity. He noted that the material became very conductive, and its resistance was just one order of magnitude above that of graphene. 'So it became an excellent metallic conductor.' Further experiments showed that moderate heating (up to 200°C) produced semiconducting germanane.

Germanene can, therefore, be an insulator, a semiconductor or a metallic conductor, depending on the heat treatment with which it is processed. It remains stable after being cooled to room temperature. The heating causes multilayer flakes of germanene to become thinner - confirmation that the change in conductivity is most likely caused by the disappearance of hydrogen.

Spintronic device

Germanene could be of interest in the construction of spintronic devices. These devices use a current of electron spins. This is a quantum mechanical property of electrons, which can best be imagined as electrons spinning around their own axis, causing them to behave like small compass needles. Graphene is an excellent conductor of electron spins, but it is hard to control spins in this material because of their weak interaction with the carbon atoms (spin-orbit coupling).

'The germanium atoms are heavier, which means there is a stronger spin-orbit coupling', says Ye. This would provide better control of spins. Being able to construct metallic germanene with both excellent conductivity and strong spin-orbit coupling should therefore pave the way to spintronic devices.
-end-
Reference: Qihong Chen, Lei Liang, Georgia Potsi, Puhua Wan, Jianming Lu, Theodosis Giousis, Eleni Thomou, Dimitrios Gournis, Petra Rudolf, and Jianting Ye: Highly conductive metallic state and strong spin-orbit interaction in annealed germanane. NANO Letters 24 January 2019.

University of Groningen

Related Graphene Articles:

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
Graphene's magic is in the defects
A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous and predictable properties by discovering how to engineer graphene structure on an atomic level.
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
More Graphene News and Graphene Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab