Nav: Home

Blood cells could hold master clock behind aging

February 07, 2019

Blood cells could hold the key to aging, according to new research out of Case Western Reserve University School of Medicine. In a study published in Aging Cell, researchers found human blood cells have an intrinsic clock that remains steady even after transplant. The researchers say the clock could control human aging and may underlie blood cancers.

Shigemi Matsuyama, DVM, PhD, cell biologist and associate professor of medicine at Case Western Reserve University School of Medicine, led an international team of researchers in studying the clock. The team measured cellular age in blood cells transplanted from healthy donors to leukemia patients, focusing on donor-recipient pairs of very different ages.

"This study is related to the fountain of youth," Matsuyama said. "We found young blood cells stay young in older people. There was no accelerated aging of young blood cells in an older human body." Matsuyama's team found the other direction was also true--blood cells from adult donors transferred to a child stay older. The cells retained their intrinsic age nearly two decades after transplant.

Their inherent steadiness suggests blood cells could be the master clock of human aging, as they are not easily influenced by their environment, Matsuyama said.

The study showed blood cells retain epigenetic patterns in DNA methylation--chemical groups attached to DNA--that can be used to calculate their age. Despite substantial age differences between donor and recipient (up to 49 years), the DNA methylation age of transplanted blood reflected the age of the donor, even after many years of exposure to the recipient's body, wrote the authors. Said Matsuyama, "DNA functions as a timekeeper of our age."

DNA methylation as a predictor of age was first described in 2013 by Matsuyama's collaborator on the study, biostatistician Steve Horvath, PhD, of the University of California, Los Angeles. "He found the formula. The mechanism, and whether cells in the body synchronize DNA methylation age, wasn't clear," Matsuyama explained. "I'm not a mathematician. I'm a cell biologist. So, we collaborated to investigate the mechanism of the epigenetic clock in an experimental system in my lab."

Matsuyama tested blood samples collected regularly as part of transplant monitoring, with help from the Case Comprehensive Cancer Center. He expanded his sample repository via leukemia researchers at the University of Oslo, in Norway, who heard about his work at the 2016 Keystone Symposia on aging held in Santa Fe, New Mexico. Horvath crunched cellular ages using 353 distinct methylation sites found on blood cell DNA.

Together, the researchers provided the first experimental evidence that the aging clock of blood cells is cell-intrinsic, and not set by interactions with other cell types in the body.

They are now working to identify mechanisms that can change the clock. "In cancer cells, the clock is broken," Matsuyama said. DNA methylation patterns are unstable in cancerous blood cells and often show odd aging--200 or 5 years old in a 50 year old patient, for example. "It does not match at all with the actual age." Matsuyama cautions that this is why, although it may sound appealing, he doesn't yet recommend "therapeutic" cell infusions to try to maintain one's youth.

"We don't know if blood cells serve as a master clock that could synchronize other cells. We just don't know yet," he said.

Instead, Matsuyama's team is working to understand why epigenetic age differences exist in cancer cells, and how they could be overcome. "It may be by turning on or off certain genes within the cells, we can reset the clock."

Recent studies show the DNA age of human cells can be used as a biomarker to predict the risk of age-associated diseases, such Alzheimer's disease, cardiovascular disease, and others. Last year, Horvath and Matsuyama helped publish an article reporting that DNA age is significantly accelerated in Progeria patients who suffer from premature aging. Matsuyama and his colleagues now have several studies underway to uncover the mechanism of age-dependent DNA methylation, and to understand how factors such as diet, exercise, and oxygen levels influence epigenetic clocks.
-end-
Søraas A, et al. "Epigenetic age is a cell-intrinsic property in transplanted human hematopoietic cells." Aging Cell (2019).

For more information about Case Western Reserve University School of Medicine, please visit: case.edu/medicine.

Case Western Reserve University

Related Cancer Cells Articles:

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.