Nav: Home

A better eyeshot of the makeup of ancient meteorites

February 07, 2019

Yokohama, Japan - A team of Japanese and American scientists has visualized meteorite components at resolution powers much higher than ever before. Their efforts resulted in a much better look at - and enhanced understanding of - substances inside carbonaceous chondrites, the organic-containing meteorites that land on Earth. These substances include hydrogen, carbon, nitrogen and water, all of which are needed for life.

The study was published online on January 2, 2019 in Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Carbonaceous chondrites are made of materials such as rocks, organics, ice, and fine grain dust, most of which are formed in the Solar System. The origin of organic matter that is found in meteorites dates back to the formation of the Solar System, or approximately 4.5 billion years ago. Therefore, when found on Earth and analyzed in detail, these carbonaceous chondrites are helpful for understanding the history of the Solar System, the formation of organic compounds, the presence of water on Earth, and ultimately the origin of life.

Being able to visualize organic and inorganic components of meteorites that have landed on Earth is important because it enables researchers to understand the effects of external factors - such as water and temperature - on them. More specifically, a method that enables researchers to better see and analyze the molecular structures ultimately helps them understand the spatial relationships between organic matter and minerals. This is vital for tracing the formation as well as the evolution of organic matter and ultimately understand the history of the formation of the Solar System. Also, understanding the origin of meteorites is crucial for determining the origins of both water and life on the planet.

However, studies to date have been limited with their methods as well as microscopy that has provided images at much lower resolutions. Therefore, formations and evolutions of extraterrestrial organic matter have thus far remained fairly unknown and have only been analyzed after extraction, which is a complicated multi-step process that is prone to many types of methodological errors.

"Researchers have recently mostly conducted analysis for organic matter to see the distributions and associations with inorganic compounds that may help us understand chemistry such as mineral catalyzed synthesis of organic matter, during alteration processes in the meteorite parent asteroids and historic dust processes in the early Solar System. However, since the components of meteorites are very fine, microscopic techniques to analyze such distributions and associations are limited," says Yoko Kebukawa, Ph.D., an Associate Professor at the Faculty of Engineering, Yokohama National University in Japan and the corresponding author of the paper.

Specific to this research, the focus has been on visualizing components of carbonaceous chondrites via a powerful microscopy method that provides images of meteorite components at much better resolutions. This method, atomic force microscopy-based infrared spectroscopy (AFM-IR) enabled the researchers to view the components of two carbonaceous chondrites, the Murchison meteorite and the Bell meteorite at much higher resolutions. This, in turn, provided much more detailed images than those that have been obtained thus far.

"The AFM-IR technique enabled us to overcome the limitation of poor spatial resolution of infrared spectroscopy to see the fine details of organic matter as it is distributed in meteorites and associations of minerals," Kebukawa adds.

In the future, the team plans to focus on the roles of minerals in the formations and evolution of organic matter in meteorites during external processes that affect the bodies they come from. According to Kebukawa, "This requires two things, namely analyses of meteorites that have been altered in several ways as well as proper experimental simulations of these alteration processes that will enable the aforementioned methods."
-end-
Yokohama National University (YNU or Yokokoku) is a Japanese national university founded in 1949. YNU provides students with a practical education utilizing the wide expertise of its faculty and facilitates engagement with the global community. YNU's strength in the academic research of practical application sciences leads to high-impact publications and contributes to international scientific research and the global society. For more information, please see: http://www.ynu.ac.jp/english/

Yokohama National University

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.