Silver sawtooth creates valley-coherent light for nanophotonics

February 07, 2020

Scientists at the University of Groningen used a silver sawtooth nanoslit array to produce valley-coherent photoluminescence in two-dimensional tungsten disulfide flakes at room temperature. Until now, this could only be achieved at very low temperatures. Coherent light can be used to store or transfer information in quantum electronics. This plasmon-exciton hybrid device is promising for use in integrated nanophotonics (light-based electronics). The results were published in Nature Communications on 5 February.

Tungsten disulfide has interesting electronic properties and is available as a 2D material. 'The electronic structure of monolayer tungsten disulfide shows two sets of lowest energy points or valleys,' explains Associate Professor Justin Ye, head of the Device Physics of Complex Materials group at the University of Groningen. One possible application is in photonics, as it can emit light with valley-dependent circular polarization - a new degree of freedom to manipulate information. However, valleytronics requires coherent and polarized light. Unfortunately, previous work showed that photoluminescence polarization in tungsten disulfide is almost random at room temperature.

Valleys

'Tungsten disulfide is unique in that these two valleys are not identical,' says Ye. This means that to create linearly polarized light, both valleys must respond coherently to generate light in the photoluminescence. 'But the intervalley scattering at room temperature largely destroys the coherence, so appreciable coherence is only achieved at very low temperatures that are close to zero.'

Ye and his postdoctoral researcher Chunrui Han (now working at the Institute of Microelectronics, Chinese Academy of Sciences) therefore tried a different approach to create linearly polarized light by using a plasmonic metasurface, in the form of a silver sawtooth nanoslit array. Such a material interacts strongly with tungsten disulfide and can transfer resonance induced by light in the form of an electromagnetic field in the metal. 'It enhances the light-material interaction,' says Ye.

Silver

By adding a thin layer of silver metasurface on top of a monolayer of tungsten disulfide, linear polarization induced by the valley coherence is increased to around 27 percent at room temperature. 'This room temperature performance is even better than the valley polarization obtained in many previous reports measured at very low temperatures,' says Ye. The linear polarization could be further increased to 80 percent by adding the anisotropy of plasmonic resonance, in the form of the sawtooth pattern, to the optical response of the tungsten disulfide. This means that Ye and Han are now able to induce linearly polarized photoluminescence in this material.

This accomplishment will make it possible to use both valley coherence of tungsten disulfide and plasmonic coherence of metasurfaces in optoelectronics at ambient temperatures. The next step is to replace the laser light that induced photoluminescence with electrical input.
-end-
Reference: Chunrui Han and Jianting Ye, Polarized resonant emission of monolayer WS2 coupled with plasmonic sawtooth nanoslit array. Nature Communications 5 February 2020.

University of Groningen

Related Polarized Light Articles from Brightsurf:

A trillion turns of light nets terahertz polarized bytes
Nanophotonics researchers at Rice University, the Polytechnic University of Milan and the Italian Institute of Technology have demonstrated a novel technique for modulating light at terahertz frequencies with plasmonic metasurfaces.

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus
Birefringence and linear dichroism in anisotropic materials would break down the selection rule for angle-resolved polarized Raman (ARPR) intensity.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

Polarized tweets reveal deep divisions in congressional COVID-19 messaging
An analysis of COVID-19-related tweets issued by members of Congress from January 17 through March 31, 2020 finds that Democrats and Republicans quickly polarized along party lines in their messaging about the virus on Twitter.

Researchers develop a compact 28 GHz transceiver supporting dual-polarized MIMO
Researchers at Tokyo Institute of Technology and NEC Corporation have jointly developed a 28 GHz phased-array transceiver supporting dual-polarized MIMO for fifth-generation mobile communications system (5G) radio units.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

Chiral crystals blowing off polarized spins: Phenomena detected without magnets
Scientists have discovered that a chiral crystal, which exhibits no magnetism, works as a polarizer of electron spins when the charge current is applied at room temperature in the absence of magnetic field.

Read More: Polarized Light News and Polarized Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.