In vitro organ model research trends

February 07, 2020

New Rochelle, NY, February 7, 2020--Two distinct approaches are predominantly used to recapitulate physiologically relevant in vitro human organ models. Organoids use stem cells to grow self-assembled replica organs through directed differentiation, whereas the organ-on-a-chip approach involves microfluidics and carefully controlled, 3D-printed architecture and assembly. It is difficult to assess and compare each strategy's overall influence with the increasing pace of discovery, but a new study using bibliometric analysis of nearly 3,000 research and review articles illuminates research trends. This work is reported in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the article for free on the Tissue Engineering website through March 7, 2020.

In "Global Trends of Organoid and Organ-on-a-chip in the Past Decade: A Bibliometric & Comparative Study", Pu Chen, PhD, Wuhan University School of Basic Medical Sciences, China, and coauthors present the results of their literature-based investigation. The authors identify research hotspots and their evolution, different scientific areas being influenced, and global trends for both organoid and organ-on-a-chip models. A thorough record is included of the most cited studies, influential authors and institutions, and the most relevant journals for each technique. Ultimately, the authors provide a useful framework for appreciating the unique trajectory of both approaches and also reveal a growing trend of combining the two methods.

"Organoids and Organ-on-a-chip mimic the cellular organization and physiology of native tissue," says Tissue Engineering Methods Co-Editor-in-Chief John A. Jansen, DDS, PhD, Professor and Head, Radboud University Medical Center, Netherlands. "Therefore, they are one of the major breakthrough technology platforms for tissue engineering studies."
-end-
About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Leadership of Tissue Engineering Parts B (Reviews) and Part C (Methods) is provided by Katja Schenke-Layland, PhD, Eberhard Karls University, Tübingen, Heungsoo Shin, PhD, Hanyang University; and John A. Jansen, DDS, PhD, Radboud University, and Xiumei Wang, PhD, Tsinghua University respectively. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers/ is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Tissue Engineering Articles from Brightsurf:

Plant tissue engineering improves drought and salinity tolerance
After several years of experimentation, scientists have engineered thale cress, or Arabidopsis thaliana, to behave like a succulent, improving water-use efficiency, salinity tolerance and reducing the effects of drought.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Biofabrication drives tissue engineering in 2019
In the quest to engineer replacement tissues and organs for improving human health, biofabrication has emerged as a crucial set of technologies that enable the control of precise architecture and organization.

Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.

Combined tissue engineering provides new hope for spinal disc herniations
A promising new tissue engineering approach may one day improve outcomes for patients who have undergone discectomy -- the primary surgical remedy for spinal disc herniations.

Tissue engineering: The big picture on growing small intestines
CHLA surgeon Dr. Tracy Grikscheit and colleagues describe how stem cell therapies could help babies with severe intestinal issues.

Scientists use molecular tethers, chemical 'light sabers' for tissue engineering
Researchers at the University of Washington unveiled a new strategy to keep proteins intact and functional in synthetic biomaterials for tissue engineering.

UCI engineers aim to pioneer tissue-engineering approach to TMJ disorders
Here's something to chew on: One in four people are impacted by defects of the temporomandibular - or jaw - joint.

Scientists develop a cellulose biosensor material for advanced tissue engineering
I.M. Sechenov First Moscow State Medical University teamed up together with Irish colleagues to develop a new imaging approach for tissue engineering.

The use of electrospun scaffolds in musculoskeletal tissue engineering
Rotator Cuff tears affect 15 percent of 60 year olds and carry a significant social and financial burden.

Read More: Tissue Engineering News and Tissue Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.