Nav: Home

Double dose of bad earthquake news

February 08, 2016

RIVERSIDE, Calif. -- A team of researchers, including one from the University of California, Riverside, has discovered that earthquake ruptures can jump much further than previously thought, a finding that could have severe implications on the Los Angeles area and other regions in the world.

The scientists found that an earthquake that initiates on one thrust fault can spread 10 times farther than previously thought to a second nearby thrust fault, vastly expanding the possible range of "earthquake doublets," or double earthquakes.

That could mean in areas such as Los Angeles, where there are multiple thrust faults close to each other, an earthquake from one thrust fault could spread to another fault, creating twice as much devastation.

One potential bad scenario involves a single earthquake spreading between the Puente Hills thrust fault, which runs under downtown Los Angeles, and the Sierra Madre thrust fault, located close to Pasadena, said Gareth Funning, an associate professor of earth sciences at UC Riverside, and a co-author of a paper published online today (Feb. 8, 2016) about the research in the journal Nature Geoscience.

Other susceptible areas where there are multiple thrust faults are in close proximity include the Ventura, Calif. area, the Middle East, particularly Tehran, Iran, and the front of the Himalayas, in countries such as Afghanistan, Pakistan, India and Nepal.

The researchers studied a 1997 earthquake in Pakistan, originally reported as a magnitude 7.1 event, showing that it was in fact composed of two 'subevents' -- a magnitude 7.0 earthquake, that was followed 19 seconds later by a magnitude 6.8 event, located 50 kilometers (30 miles) to the southeast.

Funning considers the two earthquakes as subevents of one 'mainshock,' as opposed to the second earthquake being an aftershock, because they happened so close together in time and were so similar in size. There were many aftershocks in the following minutes and hours, but most of them were much smaller.

The scientists used satellite radar images, precise earthquake locations, modeling and back projection of seismic radiation to prove the seismic waves from the first subevent caused the second to initiate, effectively 'jumping' the 50 kilometer distance between the two. Scientists previously thought an earthquake could only leap up to five kilometers.

The finding has implications for seismic hazard forecasts developed by the United States Geological Survey. The current forecast model does not include the possibility of a similar double earthquake on the thrust faults in the Los Angeles area.

"This is another thing to worry about," Funning said. "The probability of this happening in Los Angeles is probably pretty low, but it doesn't mean it can't happen."

Funning started work on the paper about 12 years ago as a graduate student at the University of Oxford. He was the first to find the satellite data for the earthquakes in Pakistan, which occurred in a largely unpopulated area, and notice they occurred close together in space and time.

After dropping the work for several years, he, along with lead author Ed Nissen of the Colorado School of Mines, picked it up about three to four years ago, in part because of the possible implications for the Los Angeles area, which has a similar plate boundary, with similar faults, similar distances apart as the region in Pakistan where the 1997 earthquake doublet occurred.

Thrust faults happen when one layer of rock is pushed up over another, often older, layer of rock by compressional forces. Thrust faults came to the attention of Californians after the 1994 Northridge earthquake, about 20 miles northwest of Los Angeles, which occurred on a thrust fault.

Thrust faults are not as well understood by scientists as strike-slip faults, such as the San Andreas, in part because they are not as visible in the landscape, and do not preserve evidence for past earthquakes as well.
-end-
The paper is called "Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet." Other authors are: John Elliott and Barry Parsons, both of the University of Oxford; Alastair Sloan, University of Oxford and University of Cape Town; Tim Craig and Tim Wright, both of the University of Leeds; and Alex Hutko, of the Incorporated Research Institutions for Seismology (IRIS) Data Management Center.

University of California - Riverside

Related Earthquake Articles:

From where will the next big earthquake hit the city of Istanbul?
Scientists reckon with an earthquake with a magnitude of 7 or greater in this region in the coming years.
Dissection of the 2015 Bonin deep earthquake
Researchers at Tohoku University's Department of Geophysics, have been studying the deep earthquake which occurred on May 30, 2015, to the west of Japan's Bonin Islands.
The search for the earthquake nucleus
Where a tectonic plate dives under another, in the so-called subduction zones at ocean margins, many strong earthquakes occur.
Better understanding post-earthquake fault movement
Preparation and good timing enabled Gareth Funning and a team of researchers to collect a unique data set following the 2014 South Napa earthquake that showed different parts of the fault, sometimes only a few kilometers apart, moved at different speeds and at different times.
The maximum earthquake magnitude for North Turkey
The Istanbul metropolitan region faces a high probability for a large earthquake in the near future.
More Earthquake News and Earthquake Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.