Nav: Home

NIH study reveals how melanoma spreads

February 08, 2017

Cancerous tumors are voracious. Once they have consumed all the oxygen and nutrients in the original tumor site, the cancer cells travel to other parts of the body (metastasize) to find more nourishment.

Searching for clues about how the body signals the lack of oxygen in melanoma skin cancer, National Institutes of Health (NIH) researchers focused on HIF1α (hypoxia inducible factor 1 alpha), a protein that acts as a sensor for oxygen and nutrients in many types of cancer. They discovered 40 new genes that are either turned on or off by HIF1α, and 10 genes that were associated with the amount of time it took the melanoma to move from the original tumor to the rest of the body. They published their findings February 6, 2017, in Pigment Cell and Melanoma Research.

"These newly identified genes and genetic pathways in primary melanoma could give researchers new targets for developing personalized treatments for melanoma, and potentially other cancers," said Stacie Loftus, Ph.D., lead author and staff scientist in the Genetic Disease Research Branch at the National Human Genome Research Institute, a part of NIH. "In addition, changes in how the genes are expressed (turned on or off) could be used in the future to predict how and when the cancer cells will spread to other parts of the body and how fast they will grow."

The lifetime risk of an individual being diagnosed with melanoma is 2 percent. With more than 10,130 deaths (and 76,380 new diagnoses) in 2016, melanoma is one of the leading causes of skin cancer-related deaths, according to the National Cancer Institute at NIH. Melanoma occurs when melanocytes -- cells that make pigment in skin and hair -- undergo a malignant transformation. Ultraviolet (UV) rays from the sun and from tanning beds can damage the DNA in skin cells, causing melanoma.

If melanoma is caught early, before cancer cells leave the skin and move to lymph nodes and the rest of the body, patients have a 91.5 percent 5-year survival rate. If the cancer is caught at later stages, the prognosis is much less favorable, with a 30 to 60 percent 5-year survival rate.

When tumor cells are present in an environment that lacks oxygen and nutrients, they receive a signal that it is time for the cells to move to a different part of the body. Identifying which genes define this critical tumor state provides researchers and clinicians biomarkers of this critical stage of disease progression. Biomarkers are molecules found in the blood, other body fluids or tissues that signal a normal or abnormal process. In melanoma, they can be used to determine tumor stage, diagnosis, therapy selection and when to monitor for disease recurrence.

"In many ways, melanoma is a poster child for precision medicine," Dr. Loftus said. "Current therapies in clinical trials are focused on targeting genetic changes in tumors and helping to boost one's immune system to fight the cancer cells. Identifying how cells respond to their surrounding environment is important information that can be used to help guide treatment decisions for patients."

In the next phase of her work, Dr. Loftus and her team will analyze the roles that HIF1α and other transcription factors play in turning genes on and off in melanocytes and melanomas. They will also delve into the newly discovered genes regulated by low oxygen levels that are distinct from HIF1α to better understand the role they have in tumor progression.
-end-


NIH/National Human Genome Research Institute

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...