Nav: Home

Function of olfactory receptor in the human heart identified

February 08, 2017

Researchers have for the first time identified the function of olfactory receptors in the human heart muscle, such as are also present in the nose. One of the receptors reacts to fatty acids that occur in the blood, in patients with diabetes significantly above the normal range. If a fatty acid activates the receptor, it triggers a negative effect: the heart rate and the force of muscular contraction are reduced. The team headed by Dr Nikolina Jovancevic and Prof Dr Dr Dr habil. Hanns Hatt from Ruhr-Universität Bochum has published its findings in the journal Basic Research in Cardiology.

The researchers analysed the genetic composition of myocardial cells using state-of-the-art gene sequencing technology. They discovered active genes for ten olfactory receptors. The OR51E1 receptor occurred very frequently. For the purpose of additional experiments, the researchers generated myocardial cells from embryonic stem cells and human skin cells, in collaboration with the lab headed by Prof Dr Jürgen Hescheler at the University of Cologne. In the cardiomyocytes, they activated the OR51E1 receptor with the odorant nonanoic/decanoic acid, which causes a rancid-fatty olfactory sensation. It reduced the pulse frequency of the cultivated mini hearts; the higher the odorant concentration, the more significant the reduction. Once the researchers removed the odorant, the mini hearts returned to their normal rate.

Reduced cardiovascular capacity

Moreover, in collaboration with Prof Dr Henrik Milting at the Heart and Diabetes Center in Bad Oeynhausen, the researchers from Bochum analysed isolated myocardial cells from explanted hearts of patients. If they activated the OR51E1 receptor with fatty-acid scent, the force of muscular contraction was reduced. These results were verified in experiments with tissue slices of explanted human hearts, which were conducted in collaboration with Prof Dr Andreas Dendorfer from the clinic at Ludwig-Maximilians-Universität München.

In humans, the fatty acids that have the capability of docking to OR51E1 occur in the blood and the fat tissue of the heart in a concentration that is sufficiently high to activate the receptor. That was confirmed in analyses carried out in collaboration with Prof Dr Erwin Schleicher from the University Hospital in Tübingen. The blood of diabetic patients, in particular, contains high concentrations of these fatty acids.

Negative effect in diabetic patients assumed

"This might have a negative effect on the cardiac functions of diabetic patients," speculates Hanns Hatt, Head of the Department of Cellphysiology in Bochum. His team has now developed a blocker for the OR51E1 receptor that blocks the negative effect of the activating scents. That blocker is the molecule 2-ethylhexanoic acid.

"Applying a blocker might help to reduce the negative effects on the human heart that are caused by medium-chain fatty acids, especially in patients with increased fatty acid levels in blood," concludes Hatt. He also believes it is possible that the treatment might be beneficial for patients with dramatically increased heart rates. According to the Bochum-based scent researcher, it is conceivable that the odorant might be administered percutaneously. "If the ointment is applied over the heart, the concentration of odorants that penetrate through the skin might be sufficient to have an effect on the heart; there are some hints of that," says Hatt.
-end-
Video online

You can view a video of how the odorant affects human heart cells on the following website: http://news.rub.de/english/press-releases/2017-02-08-scent-research-function-olfactory-receptor-human-heart-identified

Ruhr-University Bochum

Related Fatty Acids Articles:

Unveiling nasty act of trans-fatty acids in blood
Recent studies provide insight into the mechanism of disorders caused by trans-fatty acid consumption and suggest potential targets for treatment.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Additional benefit of omega-3 fatty acids for the clearance of metabolites from the brain
New research published online in The FASEB Journal suggests that omega-3 polyunsaturated fatty acids (found in fish oil), could improve the function of the glymphatic system, which facilitates the clearance of waste from the brain, and promote the clearance of metabolites including amyloid-β peptides, a primary culprit in Alzheimer's disease.
Omega-3 fatty acids from fish oil, may aid healing after heart attack
Taking a high dose of omega-3 fatty acids from fish oil, daily for six months after a heart attack improved the function of the heart and reduced scarring in the undamaged muscle.
Saturated fatty acids linked to breast cancer in postmenopausal women
Fatty acids in the breast may be useful indicators of cancer in postmenopausal women, according to a new study published online in the journal Radiology.
Omega-3 fatty acids shown to exert a positive effect on the aging brain
Researchers from Charité - Universitätsmedizin Berlin were able to show that omega-3 fatty acid supplementation improves memory function in humans.
Fatty acids from GM oilseed crops could replace fish oil
Oil from genetically modified (GM) oil seed crops could replace fish oil as a primary source of the beneficial omega 3 fatty acid EPA -- according to new research from the University of East Anglia.
Beneficial bacteria in Hawaiian squid attracted to fatty acids
A study published recently by scientists at the University of Hawai'i - Mānoa and University of Wisconsin - Madison revealed that the Hawaiian bobtail squid's symbiotic bacteria, Vibrio fischeri, has a novel type of receptors that sense the presence and concentration of fatty acids, a building block of all cell membranes.

Related Fatty Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...