Nav: Home

Decoding ocean signals

February 08, 2017

With the ocean absorbing more carbon dioxide (CO2) over the past decade, less of the greenhouse gas is reaching the Earth's atmosphere. That's decidedly good news, but it comes with a catch: Rising levels of CO2 in the ocean promote acidification, which breaks down the calcium carbonate shells of some marine organisms.

The cause of this recent increase in oceanic CO2 uptake, which has implications for climate change, has been a mystery. But new research from UC Santa Barbara geographer Timothy DeVries and colleagues demonstrates that a slowdown of the ocean's overturning circulation is the likely catalyst. Their findings appear in the journal Nature.

"Such a slowdown is consistent with the projected effects of anthropogenic climate change, where warming and freshening of the surface ocean from melting ice caps leads to weaker overturning circulation," DeVries explained. "But over the time periods we studied, it's not possible to say whether the slowdown is related to natural climate variability or to climate change caused by human activity."

DeVries and fellow researchers Mark Holzer of the University of New South Wales in Sydney and François Primeau of UC Irvine compiled existing oceanographic tracer data -- measurements of temperature, salinity, CFCs (manmade gases that dissolve into the ocean) and carbon-14 -- and separated it into three decade-long time periods: the 1980s, the 1990s and the 2000s.

Subsequent computer analysis of that data enabled the researchers to characterize ocean circulation -- the transfer of water from the surface to the deep ocean and back again -- for each time period. They then analyzed ocean-atmosphere carbon exchange and ocean carbon cycling within their circulation model.

"As the circulation changed from decade to decade --1980s to 1990s to 2000s -- the model predicted a big dip in oceanic CO2 uptake during the 1990s, then a large increase in uptake during the 2000s," DeVries explained. "Furthermore, these swings were attributed directly to the changes in ocean circulation."

According to DeVries, this finding may seem counterintuitive. Prevailing scientific wisdom asserts that the deceleration of circulation diminishes the ocean's ability to absorb anthropogenic CO2 from the atmosphere as surface waters warm and become saturated with CO2.

"While that is true, there is another effect that appears to be more important in the short term," DeVries said. "The weaker overturning circulation brings less naturally CO2-rich deep waters to the surface, which limits how much of that gas in the deep ocean escapes to the atmosphere. That causes the ocean to absorb more CO2 from the atmosphere."
-end-


University of California - Santa Barbara

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.