Nav: Home

Cosmic x-rays may provide clues to the nature of dark matter

February 08, 2018

Dark matter is increasingly puzzling. Around the world, physicists have been trying for decades to determine the nature of these matter particles, which do not emit light and are therefore invisible to the human eye. Their existence was postulated in the 1930s to explain certain astronomical observations. As visible matter, like the one that makes up the stars and the Earth, constitutes just 5 percent of the universe, it has been proposed that dark matter must represent 23 percent of what is out there. But to date and despite intensive research, it has proved impossible to actually identify the particles involved. Researchers at Johannes Gutenberg University Mainz (JGU) have now presented a novel theory of dark matter, which implies that dark matter particles may be very different from what is normally assumed. In particular, their theory involves dark matter particles which are extremely light -- almost one hundred times lighter than electrons, in stark contrast to many conventional models that involve very heavy dark matter particles instead.

According to common theory, dark matter must exist because otherwise stars would not continue to rotate around the center of their galaxies as they in fact do. Among the particularly favored candidates for dark matter are so-called weakly interacting massive particles, or WIMPs. Researchers are searching for these in the Italian Gran Sasso underground laboratory, for example. But recent scientific publications in the field of astroparticle physics are increasingly taking the view that WIMPs are unlikely to be viable prospects when it comes to dark matter. "We, too, are currently actively on the search for possible alternatives," said Professor Joachim Kopp of Mainz University.

The physicist, together with his colleagues Vedran Brdar, Jia Liu, and Xiao-Ping Want, took a closer look at the results of observations undertaken by several independent groups in 2014. The groups reported the presence of a previously undetected spectral line, with an energy of 3.5 kiloelectron volts (keV), in x-ray light from distant galaxies and galaxy clusters. This unusual x-ray radiation might offer a clue to the nature of dark matter. It has been previously pointed out that dark matter particles might decay, thereby emitting x-rays. However, Joachim Kopp's team at the Mainz-based Cluster of Excellence on Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA) is taking another approach.

X-ray radiation produced by the annihilation of dark matter

The PRISMA researchers propose a scenario in which two dark matter particles collide, resulting in their mutual annihilation. This is analogous to what happens, for instance, when an electron meets with its antiparticle, a positron. "It has long been assumed that it would not be possible to observe such annihilation of dark matter if it were made of particles that light," explained Kopp. "We have subjected our new model to scrutiny and have compared it with experimental data, and it all fits together much better than in the case of older models."

According to Kopp's model, dark matter particles would be fermions with a mass of only a few kiloelectron volts, frequently called sterile neutrinos. Such lightweight dark matter is usually considered problematic because it makes it difficult to explain how galaxies could have been formed. "So far, we have been able to deal with these concerns," explained Kopp. "Our model provides an elegant way out." The supposition that the annihilation of dark matter is a two-step process is of crucial importance in this context: during the initial stage of the process, an intermediate state is formed, which later disintegrates into the observed x-ray photons. "The results of our calculations show that the resulting x-ray signature correlates closely with the observations and thus offers a novel explanation for these," added Kopp.

At the same time, the new model itself is so general that it will offer an interesting starting point for the search for dark matter even if it turns out that the spectral line discovered in 2014 has a different origin. Theoretical and experimental physicists at JGU are currently working on the proposed ESA mission e-ASTROGRAM, which aims at analyzing astrophysical x-ray radiation with previously unachieved accuracy.
-end-


Johannes Gutenberg Universitaet Mainz

Related Dark Matter Articles:

DNA repeats -- the genome's dark matter
First direct analysis of pathogenic sequence repeats in the human genome.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
Physicists have found a way to 'hear' dark matter
Physicists at Stockholm University and the Max Planck Institute for Physics have turned to plasmas in a proposal that could revolutionise the search for the elusive dark matter.
New hunt for dark matter
Dark matter is only known by its effect on massive astronomical bodies, but has yet to be directly observed or even identified.
Tracking down dark matter
Over time, scientists have developed different theories to explain exactly what the mysterious dark matter might be made of.
A new candidate for dark matter and a way to detect it
Two theoretical physicists at UC Davis have a new candidate for dark matter and a possible way to detect it.
The mystery of the galaxy with no dark matter: Solved!
A group of researchers from the Instituto de Astrofísica de Canarias (IAC) has clarified one of the mysteries of 2018 in the field of extragalactic astrophysics: the supposed existence of a galaxy without dark matter.
Physicists constrain dark matter
Researchers from Russia, Finland, and the U.S. have put a constraint on the theoretical model of dark matter particles by analyzing data from astronomical observations of active galactic nuclei.
More Dark Matter News and Dark Matter Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab