Nav: Home

New phenomenon discovered that fixes a common problem in lasers: Wavelength splitting

February 08, 2019

A team led by University of Utah physicists has discovered how to fix a major problem that occurs in lasers made from a new type of material called quantum dots. The never-before-seen phenomenon will be important for an emerging field of photonics research, including one day making micro-chips that code information using light instead of electrons.

The study published on Feb. 4, 2019, in the journal Nature Communications.

Lasers are devices that amplify light, often producing a single, narrow beam of light. The strength of the beam depends on the material with which the laser was built; light passes through the material, which produces a beam made of light waves all with similar wavelengths, concentrating a lot of energy into a small area. This material property to be able to amplify the beam's energy is called "gain."

Many scientists are building lasers with quantum dots. Quantum dots are tiny crystals of semiconductor materials grown to sizes of only about 100-atoms across. The size of the crystals determines the light beam's wavelength, from blue light to red light and even into the infrared.

People are interested in quantum dot lasers because they can tune properties simply by growing the crystals in different sizes by using different semiconducting materials and choosing different shapes and sizes of the lasers. The downside is that quantum dot lasers often contain miniscule defects that split the light into multiple wavelengths, which distributes the beam's energy and makes it less powerful. Ideally, you want the laser to concentrate the power into one wavelength.

The new study sought to correct this defect. First, collaborators from the Georgia Institute of Technology made 50 microscopic disk-shaped quantum dot lasers out of cadmium selenide. The U team then showed that that almost all of the individual lasers had defects that split the wavelengths of beams.

The researchers then coupled two lasers together to correct the wavelength splitting. They put one laser at full gain, which describes the maximum amount of energy possible. To achieve full gain, the scientists shined a green light, called the "pump" light, onto the first laser. The quantum dot material absorbed the light and re-emitted a more powerful beam of red light. The stronger the green light they shined on the laser, the higher the gain in energy. When the second laser had no gain, the difference between the two lasers prevented any interaction, and splitting still occurred. However, when the team shined a green light onto the second laser, its gain increased, closing the gain difference between the two lasers. Once the gain in the two lasers became similar the interaction between the two lasers corrected the splitting and focused the energy into a single wavelength. This is the first time anyone has observed this phenomenon.

The findings have implications for a new field, called optics and photonics research. In the past 30 years, researchers have been experimenting with using light to carry information, rather than electrons used in traditional electronics. For example, rather than putting lots of electrons on a microchip to make a computer run, some envision using light instead. Lasers would be a big part of that and the to correct wavelength splitting can provide a significant benefit to controlling information through light. It could also be a major advantage to use materials such as quantum dots in this field.

"It's not impossible that someone could make a defect-free laser with quantum dots, but it would be expensive and time-consuming. In comparison, coupling is a quicker, more flexible, cost-effective way to correct the problem," said Evan Lafalce, research assistant professor of physics and astronomy at the U and lead author of the study. "This is a trick so that we don't have to make perfect quantum dot lasers."
-end-
Authors who contributed to the study include Qingji Zeng and Valy Z. Vardeny from the Department of Physics & Astronomy at the University of Utah and Chun Hao Lin, Marcus J. Smith, Sidney T. Malak, Jaehan Jung, Young Jun Yoon, Zhiqun Lin and Vladmir V. Tsukruk from the School of Materials Science and Engineering at the Georgia Institute of Technology. Smith also holds a position at the Air Force Research Laboratory at Wright-Patterson Air Force Base and Jung holds a position at Hongik University.

University of Utah

Related Quantum Dots Articles:

What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.
Towards high quality ZnO quantum dots prospective for biomedical applications
Scientists from Warsaw together with colleagues from Grenoble have moved a step closer to creating stable, high quality colloidal zinc oxide quantum dots (ZnO QDs) for use in modern technologies and nanomedicine.
Controlling the charge state of organic molecule quantum dots in a 2D nanoarray
Australian researchers have fabricated a self-assembled, carbon-based nanofilm where the charge state (ie, electronically neutral or positive) can be controlled at the level of individual molecules.
Modified quantum dots capture more energy from light and lose less to heat
Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.
Using quantum dots and a smartphone to find killer bacteria
A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.
Synthesizing single-crystalline hexagonal graphene quantum dots
A KAIST team has designed a novel strategy for synthesizing single-crystalline graphene quantum dots, which emit stable blue light.
US Naval Research Laboratory 'connects the dots' for quantum networks
Researchers at the US Naval Research Laboratory developed a novel technique that could enable new technologies that use properties of quantum physics for computing, communication and sensing, which may lead to 'neuromorphic' or brain-inspired computing.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
2D gold quantum dots are atomically tunable with nanotubes
Gold atoms ski along boron nitride nanotubes and stabilize in metallic monolayers.
More Quantum Dots News and Quantum Dots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.