Nav: Home

New insights into radial expansion of plants can boost biomass production

February 08, 2019

Besides the obvious longitudinal growth, plants also enlarge in the radial sense. This thickening of plant stems and roots provides physical support to plants, provides us with wood and cork, and plays a major role in sequestering atmospheric carbon into plant biomass. The tissues responsible for this radial expansion are the vascular tissues which transport water and nutrients around plants and are visible as concentric circles in tree trunks known as annual growth rings. Finally, radial growth is important for the production of many edible structures such as turnips, carrots, sugar beet and potatoes. Despite this obvious importance of lateral growth for both plant growth and our everyday lives, we know very little about how this process is controlled.

In two joint publications, De Rybel (VIB-UGent Center for Plant Systems Biology, Belgium) and Helariutta (SLCU, UK) research groups contribute to our understanding of plant radial growth by showing that several DOF-type transcription factors control oriented divisions in specific cells belonging to the vascular tissues called procambium cells.

Prof. Bert De Rybel (VIB-UGent): "Our results suggest that the seemingly homogenous set of cells in the procambium in fact contains distinct zones of high proliferation and strong quiescence depending on the position of the cell within the vascular bundle." While loss-of-function results in a dose-dependent loss of vascular cells, overexpression is able to trigger massive radial expansion by inducing oriented cell divisions in all cells in the root meristem. "This understanding will assist future breeding of economically important crops and trees to obtain higher yields and is able to improve atmospheric carbon sequestration by increasing plant biomass", adds De Rybel.
  • Mobile PEAR transcription factors integrate hormone and miRNA cues to prime cambial growth, Miyashima et al., Nature 2018
  • DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW, Smet et al., Current Biolog. 2019

VIB (the Flanders Institute for Biotechnology)

Related Plants Articles:

Not all plants are good for you
A new scientific review highlights a significant global health issue related to plants that sicken or kill undernourished people around the world, including those who depend upon these plants for sustenance.
How plants react to fungi
Using special receptors, plants recognize when they are at risk of fungal infection.
Flame retardants -- from plants
Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Plants are also stressed out
What will a three-degree-warmer world look like? When experiencing stress or damage from various sources, plants use chloroplast-to-nucleus communication to regulate gene expression and help them cope.
How plants defend themselves
Like humans and animals, plants defend themselves against pathogens with the help of their immune system.
An easier way to engineer plants
MIT researchers have developed a genetic tool that could make it easier to engineer plants that can survive drought or resist fungal infections.
Plants can smell, now researchers know how
Plants don't need noses to smell. The ability is in their genes.
Plants as antifungal factories
Researchers from three research institutes in Spain have developed a biotechnological tool to produce, in a very efficient manner, antifungal proteins in the leaves of the plant Nicotiana benthamiana.
How plants cope with stress
With climate change comes drought, and with drought comes higher salt concentrations in the soil.
More Plants News and Plants Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at