Nav: Home

Planning ahead: A new robust approach for minimizing costs in power-distribution networks

February 08, 2019

Scientists at Tokyo Institute of Technology have developed a new method for scheduling the turning on and off of power generators that minimizes costs and ensures reliability while addressing the issues prevalent in multiple previous methods.

While it is somewhat common for us to take the electricity delivered to our homes for granted, there is a lot happening behind the scenes to ensure that electrical power is available to everyone on demand. Just like many other types of machinery, generators have start-up and shut-down times and associated costs. Because multiple generators are generally available at any given point and they cannot be turned on or off quickly, network operators usually schedule these "on" and "off" operations in advance according to predicted loads in order to reduce these costs. These schedules are made based on mathematical models and strategies that deal with a tradeoff involving minimizing costs and saving energy on the one hand and ensuring reliability on the other.

One such family of mathematical optimization problems is referred to as "unit commitment (UC)" and has been used to determine the required states (on/off) of generators in power systems. As mentioned before, these problems and the schedule are determined in advance, which implies having to deal with uncertainty in multiple variables across the board, such as load, generator availability and failures, and renewable energy input. Available methods to devise such schedules have several disadvantages. Some of them take the scheduled period as a whole and require taking into account the dynamics of the generators and uncertain variables, but this uncertainty is usually not properly addressed and overly conservative schedules are obtained. Other methods are unable to deal with energy storage systems, which are essential for renewable energy technologies.

Considering these problems, a team of researchers from Tokyo Institute of Technology (Tokyo Tech), led by Professor Jun-ichi Imura, developed a novel UC method with an interesting twist to overcome the abovementioned issues. "The proposed method has advantages over previous UC methods in several ways and explicitly addresses their main issues," explains Imura. In their approach, instead of taking the scheduled period as a whole and having to deal with system dynamics, the period is divided into timeslots to be dealt with (optimized for) individually in "real time". To do this, the uncertain values in the model are independently given upper and lower limits for each timeslot, and the interplay of these limits and other constraints are used to derive feasible optimal solutions. What's more, the method can be adjusted to consider potential generator outages.

The team conducted simulations to demonstrate how the proposed method works and compared its results with those obtained using existing methods. Unlike previously reported approaches, their method was completely reliable and did not result in any power surplus or shortage. "The proposed method represents a practical framework for non-anticipative and robust UC," concludes Mr. Cho, the lead author of the paper that explains the team's efforts.

The researchers will continue working on various aspects of their new approach, such as on other ways to calculate the limits for the uncertain variables for each timeslot, to further improve the results. The development and implementation of such efficient strategies in power-distribution networks will ensure that we all have access to cheap and reliable electricity for all the electric and electronic devices that we've grown accustomed to, rely on, and love.
-end-


Tokyo Institute of Technology

Related Power Articles:

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.
Power dressing
Sensors that are worn on the skin could soon be powered by our own body heat.
Decarbonizing the power sector
Electricity supply is one of the biggest CO2 emitters globally.
No evidence that power posing works
Striking a power pose before an important meeting or interview is not going to boost your confidence or make you feel more powerful, says an Iowa State University researcher.
Energy-efficient power electronics -- Gallium oxide power transistors with record values
The Ferdinand-Braun-Institut (FBH) has now achieved a breakthrough with transistors based on gallium oxide (beta-Ga2O3).
Underwater power generation
Underwater vehicles, diving robots, and detectors require their own energy supply to operate for long periods independent of ships.
The global impact of coal power
With data and modelling from almost 8,000 coal power plants, researchers from ETH Zurich present the most comprehensive global picture to date of climate and human health impacts from coal power generation.
A new way to provide cooling without power
A system developed at MIT can provide passive cooling without the need for power, and could be used to preserve food or vaccines in hot, off-grid locations.
Solar power -- largest study to date discovers 25 percent power loss across UK
Regional 'hot spots' account for the power slump and these are more prevalent in the North of England than in the south
Cranking up the power setting may help some who use prosthetics
Amputees who use powered prosthetic ankles may be able to avoid the energetic costs typically associated with prosthetics by cranking up the power provided by their devices.
More Power News and Power Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.