Lightning's electromagnetic fields may have protective properties

February 08, 2019

Lightning was the main electromagnetic presence in the Earth's atmosphere long before the invention of electricity. There are some 2,000 thunderstorms active at any given time, so humans and other organisms have been bathed in extremely low frequency (ELF) electromagnetic fields for billions of years.

These electromagnetic fields -- the result of global lightning activity known as Schumann Resonances -- are weak and difficult to detect. Scientists never suspected that they had any tangible impact on life on Earth. But a new Tel Aviv University study finds that these fields may have protective properties for organisms living under stress conditions.

Research for the study was led by Prof. Colin Price of TAU's Porter School of the Environment and Earth Sciences and conducted by his doctoral student Gal Elhalel in collaboration with Profs. Asher Shainberg and Dror Fixler of Bar Ilan University. It was published in NatureScientific Reports on February 7.

"We found that under controlled conditions, the Schumann Resonance fields certainly had an effect on living tissues," Prof. Price says. "The most important effect was that the atmospheric ELF fields actually protected cells under stress conditions. In other words, when biological cells are under stress -- due to lack of oxygen, for example -- the atmospheric fields from lightning appear to protect them from damage. This may be related to the evolutionary role these fields have played on living organisms."

In the course of numerous laboratory experiments, in which the scientists induced fields similar to those in the atmosphere, they witnessed significant effects on living heart cells of rats within 30-40 minutes. Extremely weak magnetic fields in the 7.6-8Hz frequency range induced a number of effects when applied to rat cardiac cells, including reductions in spontaneous contractions, calcium transients and the release of Creatine Kinase (CK). (The release of CK into the liquid medium around the cardiac cells is a measure of damage to cardiac cells, which also occurs during heart attacks.) The scientists found that the effects were temporary, as the induced cell changes reversed when the fields were turned off.

"It is the first study that demonstrates a link between global lighting activity and the Schumann Resonances and the activity of living cells," Prof. Price says. "It may explain why all living organisms have electrical activity in the same ELF spectral range, and it is the first time such a connection has been shown. This may have some therapeutic implications down the line, since these ELF fields appear to protect cells from damage, but this requires further research."

Prof. Price and his team are expanding their research to other types of biological cells to see if there is a similar effect of these electromagnetic fields on other cell types.
-end-
American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers -- ranking TAU #1 in Israel, #10 outside of the US and #43 in the world.

American Friends of Tel Aviv University

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.