Nav: Home

Scientists image conducting edges in a promising 2D material

February 08, 2019

RIVERSIDE, Calif. -- A research team comprised of scientists at the University of California, Riverside, and the University of Washington has for the first time directly imaged "edge conduction" in monolayer tungsten ditelluride, or WTe2, a newly discovered 2-D topological insulator and quantum material.

The research makes it possible to exploit this edge conduction feature to build more energy-efficient electronic devices.

In a typical conductor, electrical current flows everywhere. Insulators, on the other hand, do not readily conduct electricity. In topological insulators, a special type of material, the interior works as an insulator, but the boundaries of such materials are guaranteed to be conductive due to its topological property, resulting in a feature called "topological edge conduction."

Topology is the mathematical study of the properties of a geometric figure or solid that is unchanged by stretching or bending. Applying this concept to electronic materials leads to discoveries of many interesting phenomena, including topological edge conduction. Working like highways for electrons, channels of topological edge conduction allow electrons to travel with little resistance. Further, because edge channels can be potentially very narrow, electronic devices can be further miniaturized.

Study results appear today in Science Advances.

"Several materials have been shown to be 3-D topological insulators," said Yongtao Cui, an assistant professor of physics and astronomy at UCR, who led the research. "But 2-D topological insulators are rare. Several recent experiments established that monolayer WTe2 is the first atomically thin 2-D topological insulator."

Cui explained that for a 3-D topological insulator, conduction appears at its surfaces; for a 2-D sheet-like material, such conducting features are simply at the edges of the sheet.

Cui's lab used a novel experimental technique called Microwave Impedance Microscopy, or MIM, to directly image the conduction at the edges of monolayer WTe2.

"Our results unambiguously confirm edge conduction in this promising material," Cui said.

Although WTe2 has been known to exist for decades, interest in this material got a boost in only the last few years due to its exotic physical and electronic properties discovered using topological physics. WTe2 layers are stacked together via van der Waals interactions and can be easily exfoliated into thin, 2-D, graphene-like sheets.

"In addition to conduction at the edges in monolayer WTe2, we also found that the conductive channels can extend to the interior of the material, due to imperfections -- such as cracks," Cui said. "Our observations point to new ways to control and engineer such conduction channels via mechanical or chemical means."

Cui's collaborators at the University of Washington prepared the monolayer WTe2 samples. At UCR, his lab performed the MIM measurement, which involved sending a microwave electrical signal to a sharp metal tip, and positioning the tip near the surface of monolayer WTe2. By resolving the microwave signal bounced back by the sample, the researchers could determine whether the sample region directly below the tip was conductive or not.

"We scanned the tip across the entire sample and directly mapped the local conductivity," Cui said. "We performed all the measurements at cryogenic temperatures, needed for monolayer WTe2 to exhibit the topological property. The topological properties of monolayer WTe2 can potentially serve as a platform to realize essential operations in quantum computing."

Cui's lab is already exploring new ways to manipulate the edge conduction channels and topological physics in monolayer WTe2.

"We are looking into whether stacking monolayer WTe2 with other 2-D materials can alter its topological property," he said. "We are also using mechanical and chemical methods to create networks of conduction channels. The MIM technique we used offers a powerful means to characterize the conduction channels in topological materials such as monolayer WTe2."
-end-
Cui was joined in the study by Yanmeng Shi, Ben Niu, and Brian A. Francisco of UCR; Joshua Kahn, Zaiyao Fei, Bosong Sun, Xinghan Cai, Xiaodong Xu, and David H. Cobden of the University of Washington; Di Wu of Nanjing University, China; and Zhi-Xun Shen of Stanford University; Shi, Kahn, and Niu are co-first authors of the research paper.

The work done at UCR was supported by Cui's startup funds.

University of California - Riverside

Related Topological Insulators Articles:

Quantum research unifies two ideas offering an alternative route to topological superconductivity
Researchers from University of Copenhagen have discovered a new way of developing topological superconductivity that may provide a useful route toward the use of Majorana zero modes as the foundation of qubits for quantum information.
Questionable stability of dissipative topological models for classical and quantum systems
In a new paper in EPJ D, Rebekka Koch from Amsterdam and Jan Carl Budich from Dresden analyse the spectral instability of energy-dissipative systems caused by their boundaries: A situation that is naturally given in experimental setups.
CNIO and Cabimer researchers show that DNA topological problems may cause lymphoma
Movements and changes in 3D genome structure form knots and tangles in the DNA.
Topological materials outperform through quantum periodic motion
Scientists at the US Department of Energy's Ames Laboratory have discovered that applying vibrational motion in a periodic manner may be the key to preventing dissipations of the desired electron states that would make advanced quantum computing and spintronics possible.
Measuring a dynamical topological order parameter in quantum walks
Nonequilibrium dynamical processes are central in many quantum technological contexts.
First electrically-driven 'topological' laser developed by Singapore and UK scientists
Scientists and engineers from Nanyang Technological University, Singapore (NTU Singapore) and the University of Leeds in the UK have created the first electrically-driven 'topological' laser, which has the ability to route light particles around corners -- and to cope with defects in the manufacture of the device.
New quantum switch turns metals into insulators
Researchers at the University of British Columbia have demonstrated an entirely new way to precisely control electrical currents by leveraging the interaction between an electron's spin and its orbital rotation around the nucleus.
Exotic new topological state discovered in Dirac semimetals
An international team of scientists has discovered an exotic new form of topological state in a large class of 3D semi-metallic crystals called Dirac semimetals.
Charge model for calculating the photoexcited states of one-dimensional Mott insulators
Japanese researchers have developed a charge model to describe photoexcited states of one-dimensional Mott insulators.
Topological semimetals can generate sizable transverse thermoelectric figure of merit
Thermoelectric materials can convert temperature difference in a conducting solid into electrical energy, or vice versa.
More Topological Insulators News and Topological Insulators Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.