Anther rubbing, a new movement discovered in plants, promotes prior selfing

February 08, 2019

Most plants have developed mechanisms to prevent self-fertilization and its detrimental effects of inbreeding depression. Traits promoting selfing in plants have been approached mainly from the perspective of a loss of function, or even only considered as a by-product of non-adaptive evolutionary processes. However, the shift from cross-fertilization to selfing has been identified as one of the most frequent evolutionary transitions. Therefore, adaptive mechanisms actively promoting selfing should be usual in the plant kingdom, but, remarkably, they have not been frequently found.

In "Anther Rubbing, a New Mechanism That Actively Promotes Selfing in Plants", Abdelaziz et al. describe anther rubbing, a mechanism based in autonomous, repeated, and coordinated movements of the stamens over the stigma during flower opening that promotes self-fertilization in a Brassicaceae species. The researchers use time-lapse video and micro-photography to document this novel reproductive mechanism. They also demonstrate experimentally that anther rubbing is sufficient to achieve maximal reproductive output in this plant. This mechanism is different from the known cases of delayed self-pollination because it assures self-pollination even before the flowers will be exposed to the visit of pollinators. This work demonstrates that elaborated mechanisms, including continuous and repeated movements, can evolve in plants to promote self-pollination. Since the evolution of mating systems in plants is a very active research field, this work will establish a new perspective in the study of the evolution of plant diversity and their mating system strategies.
-end-


University of Chicago Press Journals

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.