Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology

February 08, 2021

Solar energy is one of the most abundant renewable energy sources, and effective solar technologies have great potential to alleviate the grand challenges of rising global energy demands, while reducing associated emissions. Solar energy is capable of satisfying the electrical and thermal-energy needs of diverse end-users by means of photovoltaic (PV) and solar thermal (ST) technologies, respectively. Recently, hybrid photovoltaic-thermal (PVT) concepts have been proposed that synergistically combine the benefits of PV and ST technologies, and are capable of generating both electricity and useful heat simultaneously from the same area and component.

Spectral splitting is an emerging approach for designing high-performance PVT solar collectors, which employ advanced designs with optical filters that direct different parts of the solar spectrum either to the PV cells for electricity generation or to a thermal absorber for heat generation. Nevertheless, the ultimate efficiency limits of spectral-splitting PVT (SSPVT) collectors depending on the application and end-user demands, along with the optimal collector designs, PV cell and optical filter materials that can enable us to approach these limits have remained unclear, with a lack of consensus in the field, motivating a closer examination of these aspects of SSPVT technology.

In a new paper published in Light Science & Application, Christos N. Markides and Gan Huang from Imperial College London in the UK, in collaboration with Kai Wang from Zhejiang University in China, report a comprehensive framework for predicting the performance of such collectors, which is then used to identify their efficiency limits, and to provide detailed guidance for selecting optimal PV materials and optimal spectral-splitting filters capable of delivering a combined thermal and electrical performance that approaches the efficiency limits of this technology.

"We found that the relative value of thermal energy to that of electricity has a significant influence on the total effective efficiency limits, the optimal PV cell material and the optimal spectral-splitting filter of SSPVT collectors."

"CIGS solar cells are considered particularly promising for SSPVT collector applications owing to their adjustable bandgap energy. The optimal lower- and upper-bounds of the spectral-splitting filter depend strongly on the PV material" they added.

"Detailed maps in our research can assist designers in selecting appropriate solar-cell materials and spectral-splitting optical filters, depending on the conditions and application, in order to achieve optimal overall performance accounting for both energy vectors (electricity and heat) generated by these systems." the scientists stated.

Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Related Solar Energy Articles from Brightsurf:

'Transparent solar cells' can take us towards a new era of personalized energy
Solar power has shown immense potential as a futuristic, 'clean' source of energy.

CU Denver researcher analyzes the use of solar energy at US airports
By studying 488 public airports in the United States, University of Colorado Denver School of Public Affairs researcher Serena Kim, PhD, found that 20% of them have adopted solar photovoltaic (PV), commonly known as solar panels, over the last decade.

Researchers develop molecule to store solar energy
Researchers at Linköping University, Sweden, have developed a molecule that absorbs energy from sunlight and stores it in chemical bonds.

Converting solar energy to hydrogen fuel, with help from photosynthesis
Global economic growth comes with increasing demand for energy, but stepping up energy production can be challenging.

New nanodevice could use solar energy to produce hydrogen
Amsterdam, June 9, 2020 - Solar energy is considered by some to be the ultimate solution to address the current energy crisis and global warming and the environmental crises brought about by excessive consumption of fossil fuels.

Physicists develop approach to increase performance of solar energy
Experimental condensed matter physicists in the Department of Physics at the University of Oklahoma have developed an approach to circumvent a major loss process that currently limits the efficiency of commercial solar cells.

Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.

Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.

Read More: Solar Energy News and Solar Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.