New synthetic route for biofuel production

February 08, 2021

A German-Chinese research team has found a new synthetic route to produce biofuel from biomass. The chemists converted the substance 5-hydroxymethylfurfural (HMF) produced from biomass into 2,5-dimethylfuran (DMF), which could be suitable as a biofuel. Compared to previous methods, they achieved a higher yield and selectivity under milder reaction conditions. The team led by Dr. Baoxiang Peng and Professor Martin Muhler from the Laboratory of Industrial Chemistry at Ruhr-Universität Bochum (RUB) and the group led by Professor Christof Hättig from the RUB Chair for Theoretical Chemistry described the method together with colleagues from Changzhou, China, in the journal Angewandte Chemie. The final version of the article has been online since 22 January 2021.

The work was part of the German-Chinese research cooperation "Novel Functional Materials for Sustainable Chemistry", which is supported by the German Research Foundation.

Better fuel than ethanol

"DMF would be well-suited as a biofuel, as it has a higher octane number than ethanol, a better energy intensity and an ideal boiling point of 92 to 94 degree Celsius," explains Baoxiang Peng. Although the conversion from HMF into DMF has been researched intensively, there are several hurdles. DMF production requires relatively harsh reaction conditions, such as high hydrogen pressure, and often only creates a small quantity of the desired product, while also forming unwanted by-products. Researchers are thus looking for new ways to efficiently trigger the reaction under milder conditions. This was achieved in the current work.

Formic acid as the key to success

The team carried out the reaction in the presence of formic acid and hydrogen. Palladium nanoparticles were used as a catalyst. In doing so, the chemists achieved a five-times larger reaction rate than those reported with previous methods. The addition of formic acid, in particular, played a crucial role in creating favourable reaction conditions, as shown by the researchers in their detailed investigations.

They performed the reaction with various additives and compared the yield and selectivity, which were best in the presence of formic acid. The substance facilitates a faster reaction pathway and also prevents the occurrence of unwanted side reactions.
-end-


Ruhr-University Bochum

Related Biofuel Articles from Brightsurf:

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Next step on the path towards an efficient biofuel cell
Fuel cells that work with the enzyme hydrogenase are, in principle, just as efficient as those that contain the expensive precious metal platinum as a catalyst.

A biofuel for automated heat generation
Biomass is an obvious resource for energy generation with a lower environmental impact.

A protective shield for sensitive enzymes in biofuel cells
Researchers have developed a new mechanism to protect enzymes from oxygen as biocatalysts in fuel cells.

Scientists identify enzyme that could help accelerate biofuel production
Researchers at Tokyo Institute of Technology have honed in on an enzyme belonging to the glycerol-3-phosphate acyltransferase (GPAT) family as a promising target for increasing biofuel production from the red alga Cyanidioschyzon merolae.

New biofuel technology significantly cuts production time
New research from a professor of engineering at UBC's Okanagan Campus might hold the key to biofuels that are cheaper, safer and much faster to produce.

Corn better used as food than biofuel, study finds
Corn is grown not only for food, it is also an important renewable energy source.

Researchers produce biofuel for conventional diesel engines
In accordance with an EU directive, conventional automotive diesel is supplemented with seven percent biodiesel.

Insight into enzyme's 3-D structure could cut biofuel costs
Using neutron crystallography, a Los Alamos research team has mapped the three-dimensional structure of a protein that breaks down polysaccharides, such as the fibrous cellulose of grasses and woody plants, a finding that could help bring down the cost of creating biofuels.

Turning chicken poop and weeds into biofuel
Chicken is a favorite, inexpensive meat across the globe. But the bird's popularity results in a lot of waste that can pollute soil and water.

Read More: Biofuel News and Biofuel Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.