An end to invasive biopsies?

February 08, 2021

In diagnostic medicine, biopsies, where a sample of tissue is extracted for analysis, is a common tool for the detection of many conditions. But this approach has several drawbacks - it can be painful, doesn't always extract the diseased tissue, and can only be used in a sufficiently advanced disease stage, making it, in some cases, too late for intervention. These concerns have encouraged researchers to find less invasive and more accurate options for diagnoses.

Professor Nir Friedman and Dr. Ronen Sadeh of the Life Sciences Institute and School of Computer Engineering have published a study in Nature Biotechnology that shows how a wide range of diseases can be detected through a simple blood test. The test allows lab technicians to identify and determine the state of the dead cells throughout the body and thus diagnose various diseases including cancers and diseases of the heart and liver. The test is even able to identify specific markers that may differ between patients suffering from the same types of tumorous growths, a feature that has the potential to help physicians develop personalized treatments for individual patients.

The test relies on a natural process whereby every day millions of cells in our body die and are replaced by new cells. When cells die, their DNA is fragmented and some of these DNA fragments reach the blood and can be detected by DNA sequencing methods. However, all our cells have the same DNA sequence, and thus simply sequencing the DNA cannot identify from which cells it originated. While the DNA sequence is identical between cells, the way the DNA is organized in the cell is substantially different. The DNA is packaged into nucleosomes, small repeating structures that contain specialized proteins called histones. On the histone proteins, the cells write a unique chemical code that can tell us the identity of the cell and even the biological and pathological processes that are going on within it. In recent years, numerous studies have successfully developed a process where this information can be identified and thus reveal abnormal cell activity.

A new approach advanced by Hebrew University researchers, Professor Friedman and Dr. Ronen Sadeh is able to precisely read this information from DNA in the blood and use it to determine the nature of the disease or tumor, exactly where in the body it's found and even how far developed it is.

The approach relies on analysis of epigenetic information within the cell, a method which has been increasingly fine-tuned in recent years. "As a result of these scientific advancements, we understood that if this information is maintained within the DNA structure in the blood, we could use that data to determine the tissue source of dead cells and the genes that were active in those very cells. Based on those findings, we can uncover key details about the patient's health," Professor Friedman explains. "We are able to better understand why the cells died, whether it's an infection or cancer and based on that be better positioned to determine how the disease is developing."

Along with the clear diagnostic benefits of this process, the test is also non-invasive and far less expensive than traditional biopsies. Dr. Ronen Sadeh said, "We hope that this approach will allow for earlier diagnosis of disease and help physicians to treat patients more effectively. Recognizing the potential of this approach and how this technology can be so beneficial for diagnostic and therapeutic purposes, we set up the company Senseera which will be involved with clinical testing in partnership with major pharmaceutical companies with the goal of making this innovative approach available to patients."
-end-


The Hebrew University of Jerusalem

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.