Brain protein that causes Alzheimer's also protects against the disease: USask research

February 08, 2021

Findings from a new study on Alzheimer's disease (AD), led by researchers at the University of Saskatchewan (USask), could eventually help clinicians identify people at highest risk for developing the irreversible, progressive brain disorder and pave the way for treatments that slow or prevent its onset.

The research, published in the journal Scientific Reports in early January, has demonstrated that a shorter form of the protein peptide believed responsible for causing AD (beta-amyloid 42, or Aβ42) halts the damage-causing mechanism of its longer counterpart.

"While Aβ42 disrupts the mechanism that is used by brain cells to learn and form memories, Aβ38 completely inhibits this effect, essentially rescuing the brain cells," said molecular neurochemist Darrell Mousseau, professor in USask's Department of Psychiatry and head of the Cell Signalling Laboratory.

Previous studies have hinted that Aβ38 might not be as bad as the longer form, said Mousseau, but their research is the first to demonstrate it is actually protective.

"If we can specifically take out the Aβ42 and only keep the Aβ38, maybe that will help people live longer or cause the disease to start later, which is what we all want."

Aβ42 is toxic to cells, disrupts communication between cells, and over time accumulates to form deposits called plaques. This combination of factors is believed responsible for causing AD. Experts have long thought that all forms of Aβ peptides cause AD, despite the fact that clinical trials have shown removing these peptides from the brains of patients does not prevent or treat the disease.

Mousseau said the idea behind the study was simple enough: If two more amino acids is bad, what about two less?

"We just thought: Let's compare these three peptides, the 40 amino acid one that most people have, the 42 amino acid that we think is involved in Alzheimer's, and this 38 one, the slightly shorter version," said Mousseau, who is Saskatchewan Research Chair in Alzheimer disease and related dementias, a position co-funded by the Saskatchewan Health Research Foundation and the Alzheimer Society of Saskatchewan.

The project confirmed the protective effects of the shorter protein across a variety of different analyses: in synthetic versions of the protein in test tubes; in human cells; in a worm model widely used for studying aging and neurodegeneration; in tissue preparations used to study membrane properties and memory; and in brain samples from autopsies. In the brain samples, they also found that men with AD who had more Aβ42 and less Aβ38 died at an earlier age. The fact that they didn't see this same pattern in samples from women suggests the protein peptide behaves differently in men and women.

The USask team also included Maa Quartey and Jennifer Nyarko from the Cell Signalling Lab (Department of Psychiatry), Jason Maley at the Saskatchewan Structural Sciences Centre, Carlos Carvalho in the Department of Biology, and Scot Leary in the Department of Biochemistry, Microbiology and Immunology. Joseph Buttigieg at the University of Regina and Matt Parsons at Memorial University of Newfoundland were also part of the research team.

While Mousseau wasn't surprised to see that the shorter form prevents the damage caused by the longer version, he said he was a little taken aback at how significant an effect it had.

"As soon as you put Aβ38 into it, it brings it back up to control levels, completely inhibiting the toxic effects of Aβ42. That's what was pleasantly surprising."
-end-


University of Saskatchewan

Related Alzheimer Disease Articles from Brightsurf:

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Uncovering Alzheimer's disease
Characterized by a buildup of amyloid plaques in the brain, Alzheimer's is an irreversible disease that leads to memory loss and a decrease in cognitive function.

Viewpoint: Could disease pathogens be the dark matter behind Alzheimer's disease?
In a lively discussion appearing in the Viewpoint section of the journal Nature Reviews Neurology, Ben Readhead, a researcher in the ASU-Banner Neurodegenerative Disease Research Center at the Biodesign Institute joins several distinguished colleagues to discuss the idea that bacteria, viruses or other infectious pathogens may play a role in Alzheimer's disease.

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-╬▓ neurotoxically impact the brain of patients with Alzheimer's disease.

How Alzheimer's disease spreads through the brain
Tau can quickly spread between neurons but is not immediately harmful, according to research in mouse neurons published in JNeurosci.

A protective factor against Alzheimer's disease?
Researchers at the German Center for Neurodegenerative Diseases (DZNE) and the Institute for Stroke and Dementia Research (ISD) at the University Hospital of the Ludwig-Maximilians-Universit├Ąt (LMU) in Munich have found that a protein called TREM2 could positively influence the course of Alzheimer's disease.

An alternate theory for what causes Alzheimer's disease
Alzheimer's disease, the most common cause of dementia among the elderly, is characterized by plaques and tangles in the brain, with most efforts at finding a cure focused on these abnormal structures.

Alzheimer's: How does the brain change over the course of the disease?
What changes in the brain are caused by Alzheimer's disease?

Possible pathway to new therapy for Alzheimer's disease
Researchers have uncovered an enzyme and a biochemical pathway they believe may lead to the identification of drugs that could inhibit the production of beta-amyloid protein, the toxic initiator of Alzheimer's disease (AD).

Promising novel treatment against Alzheimer disease
New research conducted at the Lady Davis Institute (LDI) at the Jewish General Hospital reveals that a novel drug reverses memory deficits and stops Alzheimer disease pathology (AD) in an animal model.

Read More: Alzheimer Disease News and Alzheimer Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.