New method developed for 'up-sizing' mini organs used in medical research

February 08, 2021

A team of engineers and scientists has developed a method of 'multiplying' organoids: miniature collections of cells that mimic the behaviour of various organs and are promising tools for the study of human biology and disease.

The researchers, from the University of Cambridge, used their method to culture and grow a 'mini-airway', the first time that a tube-shaped organoid has been developed without the need for any external support.

Using a mould made of a specialised polymer, the researchers were able to guide the size and shape of the mini-airway, grown from adult mouse stem cells, and then remove it from the mould when it reached the point where it could support itself.

Whereas the organoids currently used in medical research are at the microscopic scale, the method developed by the Cambridge team could make it possible to grow life-sized versions of organs. Their results are reported in the journal Advanced Science.

Organoids are tiny, three-dimensional cell assemblies that mimic the cell arrangement of fully-grown organs. They can be a useful way to study human biology and how it can go wrong in various diseases, and possibly how to develop personalised or regenerative treatments. However, assembling them into larger organ structures remains a challenge.

Other research teams have experimented with 3D printing techniques to develop larger mini-organs, but these often require an external support structure.

"Mini-organs are very small and highly fragile," said Dr Yan Yan Shery Huang from Cambridge's Department of Engineering, who co-led the research. "In order to scale them up, which would increase their usefulness in medical research, we need to find the right conditions to help the cells self-organise."

Huang and her colleagues have proposed a new organoid engineering approach called Multi-Organoid Patterning and Fusion (MOrPF) to grow a miniature version of a mouse airway using stem cells. Using this technique, the scientists achieved faster assembly of organoids into airway tubes with uninterrupted passageways. The mini-airways grown using the MOrPF technique showed potential for scaling up to match living organ structures in size and shape, and retained their shape even in the absence of an external support.

The MOrPF technique involves several steps. First, a polymer mould - like a miniature version of a cake or jelly mould - is used to shape a cluster of many small organoids. The cluster is released from the mould after one day, and then grown for a further two weeks. The cluster becomes one single tubular structure, covered by an outer layer of airway cells. The moulding process is just long enough for the outer layer of the cells to form an envelope around the entire cluster. During the two weeks of further growth, the inner walls gradually disappear, leading to a hollow tubular structure.

"Gradual maturation of the cells is really important," said Dr Joo-Hyeon Lee from Cambridge's Wellcome - MRC Cambridge Stem Cell Institute, who co-led the research. "The cells need to be well-organised before we can release them so that the structures don't collapse."

The organoid cluster can be thought of like soap bubbles, initially packed together to form to the shape of the mould. In order to fuse into a single gigantic bubble from the cluster of compressed bubbles, the inner walls need to be broken down. In the MOrPF process, the fused organoid clusters are released from the mould to grow in floating, scaffold-free conditions, so that the cells forming the inner walls of the fused cluster can be taken out of the cluster. The mould can be made into different sizes or shapes, so that the researchers can pre-determine the shape of the finished mini-organ.

"The interesting thing is, if you think about the soap bubbles, the resulting big bubble is always spherical, but the special mechanical properties of the cell membrane of organoids make the resulting fused shape preserve the shape of the mould," said co-author Professor Eugene Terentjev from Cambridge's Cavendish Laboratory.

The team say their method closely approximated the natural process of organ tube formation in some animal species. They are hopeful that their technique will help create biomimetic organs to facilitate medical research.

The researchers first plan to use their method to build a three-dimensional 'organ on a chip', which enables real-time continuous monitoring of cells, and could be used to develop new treatments for disease while reducing the number of animals used in research. Eventually, the technique could also be used with stem cells taken from a patient, in order to develop personalised treatments in future.
-end-
The research was supported in part by the European Research Council, the Wellcome Trust and the Royal Society.

University of Cambridge

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.