New drug target for Ebola, Marburg viruses

February 08, 2021

Ebola and Marburg are among the most deadly viruses, with mortality rates from these infections ranging from 25% to 90%. While no drugs currently are available on the market to prevent infection from these viruses -- they belong to a category of viruses called filoviruses, which are known to cause hemorrhagic fever -- researchers have identified a few small drug molecules that can block filoviruses from infecting cells by occupying a single site on a glycoprotein in the virus.

Now, researchers at the
These findings are reported in the journal PLOS Pathogens.

"We need to identify how these filoviruses get into cells as a means to help us identify or develop drugs that can prevent infection," said Lijun Rong, UIC professor of microbiology and immunology at the College of Medicine and a corresponding author of the paper. "Even though at the moment Ebola and Marburg are not in the news that often, having drugs in our arsenal in case of a flare-up is invaluable. These viruses also mutate constantly, so having a better understanding of how they work will let us develop next-generation viral inhibitors."

Rong's group and his collaborators, led by Rui Xiong, UIC research assistant professor of pharmaceutical sciences at the College of Pharmacy, identified the second glycoprotein binding site by pairing the virus with hundreds of different small drug molecules thought to possibly have an effect on viral entry into cells. Several of the drugs were able to prevent viral entry.

Through a series of experiments using molecular, biophysical and structural experimental techniques, they were able to look more closely at how these drugs were interacting with the virus. They found that the drugs were binding to a previously unknown site on the viral surface glycoprotein required for cell infection.

"The good news is that there are already drugs approved by the FDA that can bind to the new site we identified," Rong said. "If we can give drugs that bind to the site we newly identified and the site previously identified, it can help prevent viral infection with lower doses of each drug. Interfering with both sites on the viral surface glycoprotein, it also reduces the chances of the glycoprotein mutating to the point that it escapes the effect of the drug combination and is able to infect cells once again."
-end-
Xiong is also a corresponding author of the paper. Adam Schafer, Laura Cooper, Raghad Nowar, Hyun Lee, Yangfeng Li, Benjamin Ramirez, Michael Caffrey, Han Cheng of UIC; Norton Peet of Chicago BioSolutions, Inc.; Erica Ollmann Saphire of the LaJolla Institute of Immunology, and Gregory Thatcher, formerly of UIC and now of the University of Arizona, are co-authors on the paper.

This research was partially supported by grant awards from the National Institutes of Health (R41AI12697, R42AI126971).

University of Illinois at Chicago

Related Ebola Articles from Brightsurf:

Targeting the shell of the Ebola virus
As the world grapples with COVID-19, the Ebola virus is again raging.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

Ebola transmission risks would be taken more seriously with ground-up interventions
A study led by the University of Kent's Durrell Institute of Conservation and Ecology (DICE) has found significant differences in disease risk perception and channels of information about Ebola virus disease (EVD) in rural areas and urban centres of Guinea, West Africa.

US inroads to better Ebola vaccine
As the world focuses on finding a COVID-19 vaccine, research continues on other potentially catastrophic pandemic diseases, including Ebola and Marburg viruses.

Ebola antibodies at work
Scientists in Israel and Germany show, on the molecular level, how an experimental vaccine offers long-term protection against the disease.

Half of Ebola outbreaks undetected
An estimated half of Ebola virus disease outbreaks have gone undetected since it was discovered in 1976, according to research published in PLOS Neglected Tropical Diseases.

Protecting those on the frontline from Ebola
Online training developed at the Medical University of South Carolina (MUSC) increased the knowledge of health care workers about effective prevention of Ebola up to 19 percent and reduced critical errors to 2.3 percent in a small MUSC cohort.

Another piece of Ebola virus puzzle identified
A team of researchers have discovered the interaction between an Ebola virus protein and a protein in human cells that may be an important key to unlocking the pathway of replication of the killer disease in human hosts.

How the human immune system protects against Ebola
'The current approach for treatment of filovirus infections with antibody cocktails tested in animal models utilizes the principle of targeting of non-overlapping epitopes.

How to slow down Ebola
The phylogenetic tree of the 2013-2016 Ebola epidemic doesn't just tell us how the Ebola virus was able to evolve: it also reveals which events and preventive measures accelerated or slowed down its spread.

Read More: Ebola News and Ebola Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.