Synchronization of brain hemispheres changes what we hear

February 08, 2021

How come we don't hear everything twice: After all, our ears sit on opposite sides of our head and most sounds do not reach both our ears at exactly the same time. "While this helps us determine which direction sounds are coming from, it also means that our brain has to combine the information from both ears. Otherwise, we would hear an echo," explains Basil Preisig of the Department of Psychology at the University of Zurich.

In addition, input from the right ear reaches the left brain hemisphere first, while input from the left ear reaches the right brain hemisphere first. The two hemispheres perform different tasks during speech processing: The left side is responsible for distinguishing phonemes and syllables, whereas the right side recognizes the speech prosody and rhythm. Although each hemisphere receives the information at a different time and processes different features of speech, the brain integrates what it hears into a unified speech sound.

Brain waves establish connection

The exact mechanism behind this integration process was not known until now. In earlier studies, however, Preisig had found indications that measurable oscillations elicited by the brain - known as gamma waves - played a role. Now he has managed to demonstrate that the process of integrating what we hear is directly linked to synchronization by gamma waves. Neurolinguists from UZH worked on the project alongside researchers from the Netherlands and France.

Processing ambiguous information

The study, which took place at the Donders Center for Cognitive Neuroimaging in Nijmegen, the Netherlands, involved 28 healthy subjects who had to repeatedly solve a listening task: An ambiguous syllable (a speech sound between ga and da) was played in their right ear while a click containing a fragment of the syllables da or ga was played unnoticed in the left ear. Depending on what was played in their left ear, the participants heard either ga or da and then had to report what sound they had heard. During the process, the researchers were tracking activity in both hemispheres of the brain using functional magnetic resonance imaging (fMRI).

Electric stimulation impairs synchronization

During the experiments, the researchers disrupted the natural activity pattern of gamma waves by stimulating both hemispheres of the brain with electrodes attached to the head. This manipulation affected participants' ability to correctly identify the syllable they heard. The fMRI analysis showed that there were also changes in the activity of the neural connections between the right and the left brain hemispheres: The strength of the connection changed depending on whether the rhythm of the gamma waves was influenced by electric stimulation in the two brain hemispheres synchronously or asynchronously. This disruption also impaired the integration process. Thus, synchronization of the gamma waves seems to serve to balance the different inputs from the two hemispheres of the brain, providing a unified auditory impression.

Possible therapy for tinnitus

"Our results suggest that gamma wave-mediated synchronization between different brain areas is a fundamental mechanism for neural integration," says Preisig. "Moreover, this research shows for the first time, using human hearing as an example, that the connection between the two hemispheres of the brain can be successfully modulated by electric stimulation," adds Alexis Hervais-Adelman, head of neurolinguistics at the UZH Department of Psychology, who was also involved in the study.

These findings could thus also find clinical application in the near future. "Previous studies show that disturbances in the connection between the two hemispheres of the brain are associated with auditory phantom perceptions such as tinnitus and auditory verbal hallucinations," Preisig adds. "Thus, electric brain stimulation may present a promising avenue for the development of therapeutic interventions."

University of Zurich

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to