Host gene that makes people vulnerable to leprosy discovered

February 09, 2003

Montreal (February 10, 2003) - An international research team, led by Dr. Erwin Schurr and Dr. Thomas Hudson, Scientists at the Research Institute of the McGill University Health Centre, have identified a gene on human chromosome 6 that makes people vulnerable to leprosy. The study will be published in the March 2003 issue of Nature Genetics.

"This discovery will now allow us to study how the gene works and how it influences the infectious process. This is an important step toward the development of innovative prevention and treatment strategies for leprosy", stated Dr. Schurr.

"Leprosy has plagued humans for many centuries and it continues to be a concern in many countries," stated Dr. Marcel Behr, Infectious Disease Specialist at the MUHC and Assistant Professor of Medicine at McGill University. "These studies lead the way to developing better treatment and a possible vaccine."

Leprosy, a chronic disease caused by infection with the bacteria Mycobacterium leprae, affects approximately one million people worldwide. While it is a rare disease in Canada and the United States, the World Health Organization has identified 91 countries in which leprosy infection is highly prevalent. Symptoms of leprosy include pigmented skin lesions, permanent nerve damage leading to numbness of the feet and hands and, if left untreated, the disease may result in gross disfiguration including loss of finger, toes, feet and hands. The leprosy bacteria are transmitted through direct personal contact or contaminated respiratory droplets.

Schurr and his colleagues used a technique called "genome scanning" to map the gene. The research team analyzed DNA samples from nearly 100 families who were susceptible to the disease, and found that the families shared a common gene variant on chromosome 6. They then analyzed the DNA of an additional 200 families with leprosy to confirm their findings. "In the last few years advances in technology have made complex genetic analyses, such as those used in this study, possible, "stated Dr. Thomas Hudson. "Without these advances and the cooperation of the families, this research would not have been possible."

This is the second study, published in 2003 by McGill/CGDN scientists, that illustrates the importance of host genes in infectious disease. Dr. Philippe Gros discovered a gene (Naip-5) could make mice resistant to Legionnaire's Disease. "We are now looking forward to applying the same gene identification strategies for other common infectious diseases such as tuberculosis and malaria", stated Dr. Alexandre Alcaïs, a scientist at the Institut National de la Santé et de la Recherche Médical (INSERM) Unité 550 at Necker Medical School, Paris, and co-author of the study.

Dr. Erwin Schurr is a Scientist at the McGill Centre for the Study of Host Resistance, a Researcher at the McGill University Health Centre, and an Investigator of the Canadian Genetic Diseases Network. Dr. Thomas Hudson is Director of the Genome Quebec Innovation Centre, a Scientist at the McGill University Health Centre, and an Investigator of the Canadian Genetic Diseases Network. The research was supported with grants from the Canadian Genetic Diseases Network, Canadian Institutes of Health Research, and Genome Quebec.
-end-
The Canadian Genetic Diseases Network is a not-for-profit corporation, committed to advancing Canada's scientific and commercial competitiveness in genetic research, and the application of genetic discoveries to prevent, diagnose, and treat human disease. To achieve its objectives, CGDN participates in three essential activities: facilitates and funds collaborative research in human genetics across Canada; educates emerging scientists to excel in human genetic disease research; and facilitates partnerships between industry and academia to translate research discoveries into innovative therapies or diagnostic tests. CGDN is part of the Canadian Network Centres of Excellence program.

For Information contact:
Canadian Genetic Diseases Network:
Dean Sas, Corporate Development and Communications Manager
TEL: 604-221-7300 ext. 110
dsas@cgdn.ca

MUHC Communications Services:
Christine Zeindler
Communications Coordinator (Research)
514-934-1934 ext. 36419
pager: 514-406-1577

McGill University

Related Infectious Disease Articles from Brightsurf:

Archaeology uncovers infectious disease spread - 4000 years ago
New bioarchaeology research from a University of Otago PhD candidate has shown how infectious diseases may have spread 4000 years ago, while highlighting the dangers of letting such diseases run rife.

Lack of continuous infectious disease pandemic research endangers responses
The coronavirus was also studied considerably less than blood borne viruses like Hepatitis B or C and H.I.V. and its research community has less prolific researchers than the other investigated diseases.

For patients with sepsis, an infectious disease expert may reduce the risk of death
When people with severe sepsis, an extreme overreaction by the body to a serious infection, come to the emergency room (ER), they require timely, expert care to prevent organ failure and even death.

Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.

What makes some people more receptive to the idea of being vaccinated against infectious disease?
Fear, trust, and the likelihood of exposure are three leading factors that influence whether people are willing to be vaccinated against a virulent disease, according to a new study in the journal Heliyon, published by Elsevier.

Can we feed 11 billion people while preventing the spread of infectious disease?
A new article published in Nature Sustainability describes how the increase in population and the need to feed everyone will give rise to human infectious disease, a situation the authors of the paper consider 'two of the most formidable ecological and public health challenges of the 21st century.'

Climate change responsible for severe infectious disease in UK frogs
Climate change has already increased the spread and severity of a fatal disease caused by Ranavirus that infects common frogs (Rana temporaria) in the UK, according to research led by ZSL's Institute of Zoology, UCL and Queen Mary University of London published today in Global Change Biology.

New research framework may help better understand, predict infectious disease risks
University of South Florida-led research identifies individual hosts more or less likely to escalate outbreaks.

Researchers study bacterial immunity to understand infectious disease
Patients with cystic fibrosis are often infected by pseudomonas aeruginosa, a bacterium that infects the lungs and prevents breathing, often causing death.

National Academies target opioid abuse and infectious disease consequences
The National Academies of Sciences, Engineering, and Medicine today released proceedings of a March 12 workshop exploring the rise in infectious diseases accompanying opioid abuse, and possible strategies for reducing both epidemics.

Read More: Infectious Disease News and Infectious Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.